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a b s t r a c t

Environmental modeling often requires combining prior knowledge with information obtained from
data. The robust Bayesian approach makes it possible to consider ambiguity in this prior knowledge.
Describing such ambiguity using sets of probability distributions defined by the Density Ratio Class has
important conceptual advantages over alternative robust formulations. Earlier studies showed that the
Density Ratio Class is invariant under Bayesian inference and marginalization. We prove that (i) the
Density Ratio Class is also invariant under propagation through deterministic models, whereas
(ii) predictions of a stochastic model with parameters defined by a Density Ratio Class are embedded in a
Density Ratio Class. These invariance properties make it possible to describe sequential learning and
prediction under a unified framework. We developed numerical algorithms to minimize the additional
computational burden relative to the use of single priors. Practical feasibility of these methods is
demonstrated by their application to a simple ecological model.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Risk analysis and prediction for environmental management
often makes it necessary to combine prior knowledge with infor-
mation obtained from data. Bayesian statistical inference offers a
mathematical framework to do this and even describes an iterative
learning process by using the resulting posterior knowledge as
prior knowledge for a next updating step with new data (Box and
Tiao, 1973; de Finetti, 1974; Howson and Urbach, 1989; Gelman
et al., 2003). In this framework, prior knowledge is typically
formulated by a single probability distribution to describe either
the subjective belief of an individual expert or the intersubjective
belief of several experts about the values of specified variables or
model parameters. In practice, however, such belief statements are

often ambiguous (Einhorn and Hogarth, 1985; Camerer and Weber,
1992; Clemen andWinkler, 1999). This is particularly the case if the
intersubjective belief of multiple experts is being used to represent
the current state of knowledge of the scientific community (Gillies,
1991; Rinderknecht et al., 2012). To account for this ambiguity, it is
important to analyze the influence of the prior on the posterior.
This can be done by performing a sensitivity analysis of the results
with respect to the parameters of the prior. However, such analyses
are quite limited as the priors still remain in the same parametric
family and thus do not account for ambiguity resulting from the use
of different types of distributions. For this reason, it is more
consequent to replace a single prior probability distribution by a
non-parametric set of distributions that span the range of appro-
priate distributions.

Many specifications of such sets of probability distributions over
continuous variables, so-called classes of distributions or imprecise
probabilities, have been proposed (Walley, 1991; Caselton and Luo,
1992; Berger, 1994; Ríos Insua et al., 2000, http://www.sipta.org).
(Note that the term imprecise refers here to the specification of a
probability distribution, not to its width.) Despite this theoretical
development, the concept of imprecise probabilities, which leads to
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a robustification of probability statements, is still rarely applied. A
reason for this may be that imprecise probabilities are claimed to be
over-cautious (O'Hagan (2012) in Krueger et al. (2012)) or are felt to
be too difficult to implement. Difficulties could occur during elici-
tation, when updating priors with data, or when propagating
classes of distributions to predictions through deterministic or
stochastic models.

We argue that these difficulties can be resolved to a large de-
gree and that Bayesian robustness becomes feasible in many ap-
plications if we work with the set of probability distributions from
a Density Ratio Class, which is also attractive from a conceptual
point of view. In Rinderknecht et al. (2011) we developed an
elicitation technique for such classes which was then applied to
several case studies (Arreaza, 2011 in Scholten et al., 2013,
Rinderknecht et al., 2012), to demonstrate that a wide range of
ambiguity can occur in practical applications. In the present pa-
per, we address the remaining potential obstacles by showing
how Bayesian inference, marginalization, and uncertainty prop-
agation through models can be implemented conceptually and
numerically based on the set of probability distributions that are
defined by a Density Ratio Class. The ease of these implementa-
tions relies on the properties of the Density Ratio Class. To provide
a comprehensive set of important properties and algorithms, this
paper combines a review of previously published results with
some new results, in particular regarding the propagation of
Density Ratio Classes through deterministic or stochastic models
and with respect to algorithms.

The paper is structured as follows. Section 2 is dedicated to the
methodological development. Subsection 2.1 briefly reviews the
Density Ratio Class. Next, we show in Subsection 2.2 how the Den-
sity Ratio Class can be used for Bayesian inference, in Subsection 2.3
how it can be marginalized, and in Subsection 2.4 how it can be
propagated through a model to quantify prediction uncertainty.
Section 3 discusses the numerical implementation of these tasks. In
Section 4 we demonstrate the suitability of the approach through
application to a simple empirical river periphyton model. Finally
we draw our conclusions in Section 5.

2. Methods

In this section, we briefly review the formulation of ambiguous
knowledge with Density Ratio Classes, we prove the invariance of
Density Ratio Classes under Bayesian updating and marginalization,
and we derive results for model predictions based on the propa-
gation of Density Ratio Classes through deterministic or stochastic
models.

2.1. Formulation of ambiguous prior knowledge as a Density Ratio
Class

DeRobertis and Hartigan (1981) introduced the Density Ratio
Class under the name of Intervals of Measures, whereas Berger
(1990) later called the class the Density Ratio Class. Wasserman
(1992) asserted that, under mild regularity conditions, it is the
only probability class to be invariant under Bayesian updating and
marginalization. Update invariance is an important property, as it
allows for the representation of sequential learning within a com-
mon framework. This gives an important advantage to the Density
Ratio Class relative to other representations of imprecise probabil-
ities. The Density Ratio Class also has the ability to accommodate a
variety of density function shapes, while limiting ‘unreasonable’
shapes such as sharp peaks or point masses that might not be
deemed reasonable by an expert (Rinderknecht et al., 2011).
(Depending on the size of the class, weakly or even strongly
expressed multi-modality is still possible.)

For uncertain continuous parameters q2M3ℝn, the Density
Ratio Classwith lower bound l � 0 and upper bound u � l is defined
as the set of probability density functions

GDR
l;u :¼

8>><>>:bf ðqÞ ¼
f ðqÞZ
f ðq0Þ dq0

�������� lðqÞ � f ðqÞ � uðqÞ cq

9>>=>>;; (1)

where we assume that 0<
R
lðqÞ dq � R uðqÞ dq<∞: The non-

normalized densities l and u bound the shapes of the non-
normalized probability densities in the class. The class then con-
sists of the normalized densities that fulfill these shape restrictions.
In this paper, we shall exclude improper densities sincewe consider
their interpretation questionable (Rinderknecht et al., 2011). Note
that the Density Ratio Class has the following property:

GDR
l;u ¼ GDR

ll;lu c l>0 : (2)

This implies that one of the “non-normalized” densities, l or u, can
still be chosen to be normalized.

Following from (1), the lower and upper probabilities, P and P, of
a random variable characterized by the Density Ratio Class, GDR

l;u ,
taking a value within a subset A of its domain are given by

PðAÞ ¼ infbf2GDR
l;u

Z
A
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Z
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and

PðAÞ ¼ supbf2GDR
l;u

Z
A

bf ðqÞ dq ¼

Z
A

uðqÞ dq
Z
A

uðqÞ dqþ
Z
Ac

lðqÞ dq
(4)

where Ac is the complement of A. The first of these equations fol-
lows from the fact that for any bf2GDR

l;u ,
R
A
bf dq can be written in the

form
R
Af dq=ð

R
Af dqþ RAc f dqÞ and x/(x þ y) is decreasing in y for

fixed x > 0 and increasing in x for fixed y > 0. Note that the equation
is obviously also true if either

R
AlðqÞ dq ¼ 0 or

R
AcuðqÞ dq ¼ 0, and

the integrals cannot both be zero because of the condition
R
l dq>0.

The second equation follows analogously.
In the following three subsections we elaborate important

properties of Bayesian inference, marginalization and prediction
with the Density Ratio Class.

2.2. Bayesian parameter inference with Density Ratio Class priors

The first property we discuss is the invariance of the Density
Ratio Class under Bayesian inference, or updating. The likelihood
function, L(yjq) ¼ p(yjq), is the probability density of model results
(or also predictand), y, given themodel parameters, q. For statistical
inference, we substitute observations for the argument y and are
interested in the dependence of L on the parameters. For this
reason, we simplify the notation in the following sections to L(q)
and do not explicitly indicate the dependence on the observations,
y, which in the context of inference are assumed to be fixed.Wewill
return to the full notation in Subsection 2.4., p(zjq), where y is
replaced by z to clarify that, in the context of probabilistic predic-
tion, it is not the observations y that are substituted for the argu-
ment of the probability density function.
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