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a b s t r a c t

Life cycle assessment (LCA) calculates the environmental impact of a product over its entire life cycle.
Uncertainty analysis is an important aspect in LCA, and is usually performed using Monte Carlo sampling.
In this study, Monte Carlo sampling, Latin hypercube sampling, quasi Monte Carlo sampling, analytical
uncertainty propagation and fuzzy interval arithmetic were compared based on e.g. convergence rate
and output statistics. Each method was tested on three LCA case studies, which differed in size and
behaviour. Uncertainty propagation in LCA using a sampling method leads to more (directly) usable
information compared to fuzzy interval arithmetic or analytical uncertainty propagation. Latin hyper-
cube and quasi Monte Carlo sampling provide more accuracy in determining the sample mean than
Monte Carlo sampling and can even converge faster than Monte Carlo sampling for some of the case
studies discussed in this paper.

© 2014 Elsevier Ltd. All rights reserved.

Software and data availability

All modelling done in this paper is done in MATLAB®; the code
and data can be forwarded by the first author upon request. In
addition, software for life cycle assessment calculations based on
matrix representation is available at CML, and was developed by
Reinout Heijungs, Leiden University. The software CMLCA can be
downloaded free of charge from: www.cmlca.eu, programming
language Delphi, system requirement Windows XP or higher (32
bits), no special hardware requirements.

1. Introduction

Life cycle assessment (LCA) is an establishedmethod to calculate
the environmental impact of a product over its entire life cycle
(Curran, 2012). It has also been applied in areas such as business
strategy, product innovation, policy development and eco-labelling
(Cooper and Fava, 2006). It has been used to quantify environ-
mental emissions of production systems (e.g. Whittaker et al.,
2013), and to make decisions about potential options to reduce
the environmental impact of products (Carvalho et al., 2012; Levis
et al., 2013; Tillman, 2000). According to the ISO 14040

standardized framework for (environmental) life cycle assessment,
an LCA consists of four phases: goal and scope definition, inventory
analysis, impact assessment and interpretation. The goal and scope
phase includes definition of the boundary of the product life cycle,
the functional unit (main output of the system) and allocation
method. In the inventory analysis, data about resource use and
emissions related to each production process are collected and are
translated to environmental impacts. During the final phase the
results are presented and interpreted.

During the inventory analysis, data are collected from different
systems along the chain. These data can be highly variable, espe-
cially if they originate from systems that depend on weather con-
ditions, like agriculture (Brentrup et al., 2000). Results of an LCA,
therefore, are uncertain due to lack of knowledge about the true
value of its model parameters (Bj€orklund, 2002; Heijungs and
Huijbregts, 2004). LCAs that demonstrate a single point value as
their result, overlook the range of possible realizations of output
data, and could therefore bemisleading (Bj€orklund, 2002), or might
provide a false sense of accuracy (De Koning et al., 2010). At present,
a standardized definition for uncertainty in LCA (Bj€orklund, 2002;
Heijungs and Huijbregts, 2004; Finnveden et al., 2009) and a
standardized methodology how to propagate uncertainties are
missing. Application of uncertainty propagation in LCA might be
hampered due to long calculation time (Ciroth et al., 2004), caused
by the large amount of data elements (i.e. input parameters); lack of
consensus about relevant applicable methods or missing informa-
tion on the required descriptive statistics of input parameters
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(Bj€orklund, 2002). Incorporating uncertainty, however, increases
reliability of results and improves decision making.

Various types and sources of uncertainty can be distinguished
(Bj€orklund, 2002; Heijungs and Huijbregts, 2004; Finnveden et al.,
2009). In this paper, we focus on parameter uncertainty, following
the definition of Bj€orklund (2002) and Heijungs and Huijbregts
(2004). Parameter uncertainty includes e.g. inaccuracy of mea-
surements, erroneous data, incomplete data, round-off errors and
(natural) variability. A comprehensive paper of Lloyd and Ries
(2007) showed the broad scope of techniques and methods avail-
able to researchers in LCA towards propagation of (parameter)
uncertainty. Uncertainty propagation is currently dominated in LCA
literature by one type of method (i.e. Monte Carlo sampling), but
there are several other methods on propagating uncertainties
(Lloyd and Ries, 2007). These methods would be better at coping
with the large size of LCA inventories and considerably reduce
computational effort (i.e. calculation time and memory usage)
(Heijungs, 2010), or can be applied when limited knowledge about
the input uncertainties is present (Heijungs et al., 2005).

So far, these methods of uncertainty propagation have not been
compared in a consistent manner. Methods examined in this paper
were selected from Lloyd and Ries (2007), because they are most
commonly applied. The following methods were selected: Monte
Carlo sampling (MCS) and (standard) Latin hypercube sampling
(LHS), analytical uncertainty propagation (AUP) and fuzzy interval
arithmetic (FIA) (Lloyd and Ries, 2007). In addition, we also selected
another type of sampling method: (randomized) quasi Monte Carlo
sampling (QMCS) that showed promising results (e.g. Subramanyan
et al. (2008) in LCA and Tarantola et al. (2012) more in general).

The performance of these uncertainty propagation methods
may depend on size, behaviour of the case study (linear or non-
linear) and properties of the input parameters (Saltelli et al.,
2010; Tarantola et al., 2012). To illustrate the performance of the
methods, we therefore examined three case studies that differed in
size and behaviour, and type of distribution function and dispersion
of the input parameters. Two small artificial case studies were
selected that differed with respect to their behaviour and a bigger
linear case study representing an existing production system of a
north-east Atlantic fishery.

This study aims to (1) give more insight into Monte Carlo
sampling, Latin hypercube sampling, quasi Monte Carlo sampling,
fuzzy interval arithmetic and analytical uncertainty propagation,
and (2) compare the uncertainty propagation methods to show the
performance, advantages and disadvantages of each method used
when applied in LCA. We start with a recap of matrix representa-
tion in LCA, followed by an introduction to each of the five uncer-
tainty propagation methods. Subsequently, all five methodologies
are applied to the case studies and their results are compared on
different criteria.

2. Materials and methods

2.1. Preliminary on notation and terminology

In order to calculate the environmental impact (g) corresponding to a functional
unit (f), a model of the following form is constructed (Heijungs and Suh, 2002):

g ¼ BA�1f (1)

The (square) technology matrix A represents production processes which are
given in each column, the rows represent product flows. Thematrix is constructed in
such a way that e.g. in the first column electricity is produced that is subsequently
used for fuel production in the second column. This results in a large matrix with
interlinked production processes, which is scaled to produce the amount given by
the functional unit vector f (the scaling vector s equals: s ¼ A�1 f). The intervention
matrix B represents the input of raw materials and output of emissions corre-
sponding to each production process of the technology matrix A. In most LCAs a
readily available database is used for A, like the ecoinvent v2.2 database (ecoinvent,
2010), which is currently made up out of 4087 processes. The size of this square A-

matrix, therefore, is large, although many elements are zero. When using readily
available databases like the ecoinvent database, as is quite common in LCA, the size
of A causes calculation of the environmental impact to be of high computational
effort. This is due to the calculation of the inverse of A, which slows down the
calculation. Especially when performing an uncertainty analysis using a stochastic
approach and large amounts of simulations are required. This illustrates the
exploration of low demanding sampling methods to decrease calculation time and
memory usage.

2.2. Uncertainty propagation methods

In the next section five uncertainty propagation methods will be discussed:
MCS, LHS, QMCS, AUP and FIA. Subsequently, a description of the case studies and
their model parameters are given, followed by a description of how the methods are
compared.

2.3. Monte Carlo sampling

Uncertainty propagation using a sampling approach started with the develop-
ment of MCS in 1949 (Metropolis and Ulam, 1949), quickly becoming widespread
(Burmaster and Anderson, 1994; Helton et al., 2006). MCS consists of drawing
(pseudo-) random numbers from a set of input parameters (k) with known distri-
bution functions to obtain the sampled distribution of the output parameter (Helton
et al., 2006). While MCS might be computationally demanding, it has the advantage
that it can be used to compare output statistics like the mean or parameter of
dispersion between two studies. A disadvantage is the long calculation time due to a
large number of simulations that have to be performed before the output uncer-
tainty can be determined.

The standard error of the mean (SEM) can be used as a measure of the
convergence rate of the sampling method. The SEM describes howmuch variation is
expected around the sample mean for a specific sample size. In theory, the standard
error of the mean of MCS convergences as O ðs=

ffiffiffiffi

N
p

Þ, where s is the standard devi-
ation of the sample and N is the sample size. This means that the convergence rate
does not depend on the amount of input parameters.

In order to apply MCS, the following input is required: the type of distribution
function (e.g. log-normal, triangular) of each input parameter, a central value (such
as the mean (m)) and a parameter of dispersion (p), such as the standard deviation
(s) of the probability density function in case of normal distributions. The result of
applying this method is a sampled distribution of g (Table 1).

2.4. Latin hypercube sampling

LHS is a variant of Monte Carlo sampling employing a stratified sampling
approach. The distribution functions of the input variables are divided in equally
probable (i.e. stratified) subgroups from which random numbers are drawn, which
are subsequently combined at random (Helton et al., 2006). The idea behind LHS is
that input parameters are sampled more uniformly than (psuedo-) random sam-
pling, resulting in a faster convergence rate. LHS has been suggested, therefore, as a
promising alternative to MCS for uncertainty propagation in LCA by Heijungs (2010)
and Peters (2007), and it is used in LCA amongst others by Basson and Petrie (2007);
De Koning et al. (2010); Geisler et al. (2005) and Huijbregts et al. (2000). Many
improvements have been made to the original LHS design, such as maximin LHS
(Morris and Mitchell, 1995) and Latin supercube sampling (Tarantola et al., 2012),
but we will only focus on the original design, referred to in this paper as standard
LHS. In order to apply this method, similar type of information as for MCS is required
(Table 1).

2.5. Quasi Monte Carlo sampling

The QMCS procedure is similar to MCS, but uses quasi-random numbers to
sample from the distribution functions (Sobol', 1967; Saltelli et al., 2010). Quasi-
random numbers are deterministic numbers that are equally distributed for a

Table 1
Descriptive statistics and additional requirements for implementation of Monte
Carlo sampling (MCS), Latin hypercube sampling (LHS), quasi Monte Carlo sampling
(QMCS), Fuzzy interval arithmetic (FIA) and analytical uncertainty propagation
(AUP) in life cycle assessment.

Method Inputs Outputs Additional requirements

MCS pdfa, m, p e.g. x, s (pseudo-) Random sample generator
LHS pdf, m, p e.g. x, s Stratified sampling approach, (pseudo-)

random sample generator
QMCS pdf, m, p e.g. x, s Quasi-random numbers, randomization method
FIA S, vc, d± vc, d± Construction of a possibility function
AUP s s First order Taylor approximation

a pdf: probability density function (distribution function) m: mean;p: parameter
of dispersion; x: mean of the sample; s standard deviation of the sample; S: shape;
vc: core value; d±: upper and lower bound; s: standard deviation.
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