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a b s t r a c t

This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the
Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the
FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al.
(2009), which estimates the posterior probability density function of model parameters in high-
dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior
probability distributions and three ways to initialize the sampling process. It evaluates parametric and
predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate
the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional
multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive
transport model. The use of the MCMC capability is made straightforward and flexible by adopting the
JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types
of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals
which require linearity and Gaussian error assumptions and typically 10se100s of highly parallelizable
model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective
function surface and Gaussian observation error assumptions and typically 100se1,000s of partially
parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require
few assumptions and commonly 10,000se100,000s or more partially parallelizable model runs. Ready
access allows users to select methods best suited to their work, and to compare methods in many
circumstances.

Published by Elsevier Ltd.

Software availability

Name of software: The Markov Chain Monte Carlo capability in
UCODE_2014

Description: The Markov Chain Monte Carlo capability developed
in UCODE_2014 to generate parameter samples and
evaluate parametric and predictive Bayesian
uncertainties

Developer: Dan Lu (lud1@ornl.gov), Mary Hill (mchill@usgs.gov),
and Eileen Poeter (epoeter@mines.edu)

Programming language: Fortran

Availability: Download from website http://igwmc.mines.edu/free
ware/ucode/

1. Introduction

Quantifying uncertainty in evaluations and predictions of how
anthropogenic and/or natural events affect the environment is an
important step of any mathematically based modeling effort. The
new version of UCODE, UCODE_2014, provides a set of uncertainty
quantification methods that range from computationally frugal
regression methods (as few as 10se100s of model runs after opti-
mization) with often significant restrictive assumptions, to
computationally demanding Bayesian methods (commonly
10,000se100,000s of model runs) with few restrictive assump-
tions. All methods are able to account for prior information. Having
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this range of methods readily accessible to users as provided by
UCODE_2014 is important to the following goals:

(1) investigative studies in which the different uncertainty in-
tervals types are compared and guidance is provided about
circumstances for which the more computationally expen-
sive Bayesian credible intervals are likely to be important and
when the computationally cheaper regression confidence
intervals are potentially useful (for example, see Lu et al.
(2012)),

(2) progressive calculation of intervals so that computationally
frugal regression confidence intervals can be used routinely
earlier in a study while the more expensive Bayesian credible
intervals can be calculated occasionally and often later in the
study,

(3) calculation of only Bayesian credible intervals (as needed for
models with very irregular objective function surfaces and
often with multiple local minima) and,

(4) calculation of only computationally frugal regression confi-
dence intervals (as needed to enable use of computationally
demandingmodels and evaluation usingmultiple alternative
models, and valid if linearity or smoothness, and Gaussian
assumptions are not violated too much).

A program supporting such flexible strategies is needed because
of limitations in the existing programs developed for uncertainty
analysis in the environmental community. For example, the
DAKOTA optimization and uncertainty software (Adams et al.,
2013) previously evaluated the Bayesian credible intervals using
the DRAM algorithm (Haario et al., 2006) which can be less efficient
and unreliable for complex and multimodal problems than the
DREAM algorithm used in UCODE_2014 (Vrugt et al., 2009). DREAM
is now in the process of being implemented in DAKOTA.
UCODE_2005 (Poeter et al., 2005) and PEST (Doherty, 2005) (which
are both inverse modeling codes that can be used with any process
models with ASCII-based inputs and outputs) provide uncertainty
analysis with linear and nonlinear regression confidence intervals.
Null space Monte Carlo (NSMC), another uncertainty analysis
method encapsulated in PEST, provides predictive probability dis-
tributions in a computationally efficient way (Keating et al., 2010),
but can display erratic performance (Laloy and Vrugt, 2012).
iTOUGH2 (Finsterle and Zhang, 2011a,b) evaluates predictive un-
certainty using linear uncertainty propagation and simple Monte
Carlo analysis based on the distributions of uncertain parameters.
Although they both use a Monte Carlo method, neither NSMC nor
iTOUGH2 analyzes the predictive uncertainty in a rigorous Bayesian
way by evaluating the posterior distributions. MICA (Doherty,
2003) and DREAM (Vrugt et al., 2008, 2009) (which are both
MCMC codes that can be used to generate parameter samples from
their posterior probability distribution) calculate only Bayesian
credible intervals. None of the listed programs calculate both
regression confidence intervals and Bayesian credible intervals
efficiently.

MICA and DREAM are the twomost widely used programs in the
environmental community for Bayesian uncertainty analysis, and
both codes are available at no charge from the developers. MICA is
developed based on the MetropoliseHastings algorithm. It is easy
and straightforward to use with any process model that uses ASCII-
based inputs and outputs. MICA input file and template and in-
struction files are similar or equivalent to those of PEST; the tem-
plate and instruction files can also be usedwith UCODE_2014. MICA
provides a wide range of probability density functions for the
MCMC parameter prior distribution, and can evaluate parametric
uncertainties for any or all model parameters and derived param-
eters. MICA cannot perform parallel MCMC computations. MICA

works well for estimating unimodal posterior distributions, but for
multimodal problems it cannot sample the target posterior distri-
bution efficiently with a single proposal distribution (Gallagher and
Doherty, 2007; Lu et al., 2012). This problem is resolved by DREAM
(Vrugt et al., 2008, 2009) which is described in Section 2 of this
paper.

This work integrates the DREAM algorithm into UCODE_2014,
which is documented by Poeter et al. (2005, 2014). Inspired by the
structure of MICA, the UCODE_2014 MCMC capability is user-
friendly and can be easily used without in-depth knowledge of
MCMC. The MCMC capability generates parameter samples and
produces Bayesian predictive uncertainty by calculating model
predictions from the generated parameter samples after a burn-in
period (i.e., the parameter samples after chain convergence). The
MCMC simulation in UCODE_2014 has parallel computing capa-
bility where the process model runs for different chains are
accomplished on different processors for simultaneous execution.
This greatly accelerates the MCMC sampling process.

With the new MCMC capability, UCODE_2014 can be used to
calculate three types of uncertainty intervals: linear and nonlinear
confidence intervals and Bayesian credible intervals. Confidence
intervals are based on regression theories and credible intervals are
based on Bayesian theories. While both can include the effect of
prior information, confidence and credible intervals are conceptu-
ally different, and their differences and similarities are discussed in
statistical literature including Jaynes (1976), Bates and Watts
(1988), and Box and Tiao (1992). A recent discussion and litera-
ture review in the context of environmental modeling is presented
by Lu et al. (2012). Given a nonlinear model and multi-Gaussian
distributed observation errors, theory suggests that nonlinear
confidence and credible intervals can be numerically identical if
model nonlinearity is “small enough” and there are no local
minima. They present a groundwater flow problemwhich indicates
that even linear intervals can provide useful evaluations of uncer-
tainty given common levels of nonlinearity. However, many envi-
ronmental problems are so nonlinear that Bayesian methods with
less restrictive assumptions are needed, and the ability to calculate
both regression confidence intervals and Bayesian credible in-
tervals is important (Vrugt and Bouten, 2002; Gallagher and
Doherty, 2007; Liu et al., 2010; Shi et al., 2012, 2014).

The computational cost of calculating the confidence and
credible intervals can be considerably different. Calculating the
linear and nonlinear confidence intervals typically requires
10se1,000s of model runs after a calibrated model is achieved.
Model calibration includes identifying both the best fit parameter
values and other aspects of model development. For a given model,
one MCMC simulation can determine both the best fit parameter
values and credible intervals that require neither smoothness nor
Gaussian error assumptions. MCMC credible intervals can some-
times be obtained using 1,000s of model runs, but commonly
require 10,000s, and even millions of model runs. For all methods,
the number of model runs required tends to increase with problem
dimensionality, though with linear confidence intervals the rate of
increase is plus two runs for each additional parameter, more for
nonlinear confidence intervals, and much more for MCMC credible
intervals. Increasing nonlinearity leads to more model runs for
nonlinear confidence intervals and MCMC credible intervals.

This paper introduces the MCMC capability implemented in
UCODE_2014 and presents extensive tests. First, the MCMCmethod
is briefly described in Section 2 with emphasis on the UCODE_2014
implementation. In Section 3, the features of the capability are
discussed in detail. In Section 4, a 10-dimensional multimodal
mathematical function and a 100-dimensional Gaussian function
are used to test the MCMC capability in complex sampling prob-
lems, and a groundwater reactive transport model is presented to
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