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We demonstrate the use of sensitivity analysis to rank sources of uncertainty in models for economic
appraisal of flood risk management policies, taking into account spatial scale issues. A methodology of
multi-scale variance-based global sensitivity analysis is developed, and illustrated on the NOE model on
the Orb River, France. The variability of the amount of expected annual flood avoided damages, and the
associated sensitivity indices, are estimated over different spatial supports, ranging from small cells to
the entire floodplain. Both uncertainty maps and sensitivity maps are produced to identify the key input
variables in the NOE model at different spatial scales. Our results show that on small spatial supports,
variance of the output indicator is mainly due to the water depth maps and the assets map (spatially
distributed model inputs), while on large spatial supports, it is mainly due to the flood frequencies and
depth—damage curves (non spatial inputs).
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Software availability

Name of software: NOE

Description: The NOE model computes expected annual flood
damages at the scale of individual flood-exposed assets,
from a given situation, i.e. from a land use map, a set of
water depth maps, and a set of depth—damage curves. It
also computes expected annual avoided damages at the
same scale, when comparing one situation with another.

Developers: N. Saint-Geours, T. Langer, F. Grelot and J.-S. Bailly

Source language: Python (arcpy library) and R

Software required: ArcGIS®

Availability: Contact the developers
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1. Introduction

Among the numerical models which are used to investigate
environmental issues, many rely on spatially distributed data, such
as Digital Terrain Models (DTM), soil maps, land use maps, etc. These
spatially distributed models, or simply spatial models, allow for an
explicit description of the spatial structures, spatial inter-
dependencies, and spatial dynamics involved in the physical, bio-
logical, or anthropogenic processes under study. However, it is now
well known that all numerical models—including spatially distrib-
uted ones—are fraught with uncertainties, which may stem from a
lack of knowledge about the phenomena under study, from the
natural variability of the quantities of interest, from measurement
errors, model assumptions, or numerical approximations (Walker
et al., 2003). Hence, when a spatial model is used as a support tool
for decision-making, one must remember that “anyone using un-
certain information—meaning the overwhelming majority of mapped
data users—should consider carefully the possible sources of uncer-
tainty and how to deal with them” (Fisher et al., 2005).

To address this issue, a number of uncertainty analysis (UA) and
sensitivity analysis (SA) methods, both qualitative and quantitative,
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have been developed over the last decade (Saltelli et al., 2008). They
study how model outputs react when input variables are uncertain.
UA focuses on the propagation of uncertainties throughout the
model and aims to quantify the resulting variability of the model
output. SA seeks to study how the uncertainty in a model output
can be apportioned to the uncertainties in each of the model inputs.
It allows input variables to be ranked according to their contribu-
tion to the output variability. SA thus helps to identify the key input
variables, those that determine the final decision of the model end-
user, and on which further research should be carried out. UA and
SA methods have been gradually adopted by modellers in different
disciplinary fields, especially in environmental research (Ascough
et al., 2008; Cariboni et al., 2007; Tarantola et al.,, 2002), and
today are widely recognized as essential steps in model building
(CREM, 2009; European Commission, 2009). One of the most
common SA approach is variance-based global sensitivity analysis
(VB-GSA), which widely explores the space of input uncertainties
(global method), and does not require any preliminary hypothesis
(linearity, regularity) regarding the model under study (Saltelli
et al., 2008).

However, partly because of the curse of dimensionality, SA
methods have seldom been applied to environmental models with
both spatially distributed inputs and outputs. A few recent works
have tried to tackle this issue (Lilburne and Tarantola, 2009, for a
review). Both Ruffo et al. (2006) and Saint-Geours et al. (2013) used
geostatistics to simulate the uncertainty on spatially distributed
model inputs and incorporate them into a VB-GSA approach.
Moreau et al. (2013) investigated the sensitivity of the agro-
hydrological TNT2 model to five different soil-map patterns, mak-
ing use of a fractional factorial design to carry out an analysis of
variance, while Chen et al. (2013) recently discussed sensitivity
analysis for spatial multi-criteria decision making models. In
addition, other authors developed new procedures to compute
sensitivity indices for a spatial model output, either with respect to
its spatial average (Lilburne and Tarantola, 2009) or with respect to
the values of the model output at each point of a study area
(Heuvelink et al., 2010; Marrel et al., 2011). A number of recent
papers also deal with the issue of CPU time expensive environ-
mental models, for which standard sensitivity analysis techniques
cannot be applied; in this case, the construction of a cheap meta-
model (emulator) is often necessary, see (Petropoulos et al., 2013)
for a recent illustration on the SimSphere soil—vegetation—atmo-
sphere-transfer model. The design of such meta-models for
expensive computer codes with spatially distributed inputs and
outputs is still an open research question (Marrel et al., 2011).

Nevertheless, to date, none of these studies has reported on a
key question: the link between UA/SA and spatial scale issues.
Indeed, in many environmental models, the end users are inter-
ested in the aggregated value of some spatially distributed model
output over a given spatial unit v. In most cases, the aggregated
value is just the linear average or the sum of model output over v
(e.g., the average porosity of a block, the total evapotranspiration
over a plot of land, etc.). But Heuvelink (1998) observed that under
a change of spatial support v, the relative contribution of uncertain
model inputs to the variability of the aggregated model output may
change. Hence, in a spatial model, the results of UA/SA depend on
the spatial scale of the problem. Unfortunately, the notion of spatial
scale—made up of the scale triplet (Bloschl and Sivapalan, 1995):
spatial extent, support, spacing—is mostly ignored in the mathe-
matical frameworks of SA methods. Among scale issues, the so-
called change of support problem has long been discussed in the
field of geostatistics: we know that the variance of an uncertain
spatially distributed quantity depends on the spatial support v over
which it is aggregated. Up to our knowledge, only Saint-Geours
et al. (2012) tried to translate this problem into the context of

variance-based GSA. On a simple model, they showed how the
sensitivity indices of model inputs depend on the spatial support v
over which the model output is aggregated; denoting with n(v) the
ratio of sensitivity indices of spatially distributed model inputs vs
non-spatial inputs, they found a relation of the form w(v) = v/|v|,
with |v| the surface area of v and v, some critical value. When the
model output is aggregated on a spatial support of area |v| smaller
than v, the ratio «(v) is larger than 1, which means that the
sensitivity indices of spatially distributed inputs are larger than
those of non-spatial inputs, and thus that spatially distributed in-
puts contribute more to the variance of model output than non-
spatial inputs. On the contrary, if |v| is larger than v, then
m(v) < 1, and the non-spatial inputs are key contributors to model
output variability. However, their work was mainly theoretical, and
their results only valid under restrictive assumptions of inputs
stationarity and model additivity. In particular, they did not
examine if their conclusions would hold on a real, complex test
case.

The aim of this paper is thus to investigate, on an applied case
study, how the results of an uncertainty and sensitivity analysis
interact with a change of spatial support of the model output. We
discuss this question through a complete case study on a model for
economic assessment of flood risk management policies, named
NOE (Saint-Geours et al., 2013). The NOE model has both spatially
distributed inputs (topography, map of water heights, land use
map, etc.), and spatially distributed outputs (avoided flood damage
indicators). A number of recent studies already performed UA/SA of
flood damage assessment models, in whole or in parts (Apel et al.,
2008). Most of these studies are limited to the forward propagation
of uncertainty (UA), the perimeter of which can vary from a single
module of the complete model—e.g., land use (Te Linde et al., 2011),
hydraulic simulation (Bales and Wagner, 2009), estimation of
damages (Koivumaki et al., 2010)—up to the entire modelling chain
(de Kort and Booij, 2007; Qi and Altinakar, 2011). Fewer publica-
tions address the issue of ranking the various sources of uncertainty
with SA (de Moel et al.,, 2012). In particular, Saint-Geours et al.
(2013) already carried out VB-GSA on the NOE model over the
Orb Delta, France. However, in this study, they disregarded spatial
scale issues: sensitivity indices were only computed with respect to
the aggregated value of model output over the entire floodplain,
without examining model behaviour at finer spatial scales. There
are at least two motivations for an in-depth study of this issue. First,
it would bring a better understanding of the behaviour of the NOE
model, by identifying the key input variables at different spatial
scales. Next, analysing the uncertainty and sensitivity of NOE model
outputs at different spatial scales would provide the model end-
users (i.e., local water managers) with a more complete informa-
tion and may help them in their decision making.

In order to demonstrate how UA/SA can bring a new insight into
scaling issues in spatial modelling, we perform a multi-scale VB-GSA
of the NOE model. Our idea is to compute variance-based sensi-
tivity indices with respect to the NOE outputs aggregated over
different spatial supports v. We will try to answer the following
questions: what is the uncertainty of the NOE output, at different
spatial scales? What are the key input variables that explain the
largest fraction of the variance of the NOE output, at different
spatial scales? How does the uncertainty of the NOE output, and the
related sensitivity indices, vary in space, at a fixed spatial scale?

The next section (Section 2) starts with some relevant back-
ground information on the selected study site (the Orb Delta), and
presents the NOE model. Next, we display a brief introduction to
the concepts of VB-GSA, and portray into details how we simulated
the uncertainty sources in the NOE model, propagated them with
Monte-Carlo simulations, and how we computed multi-scale vari-
ance-based sensitivity indices (Section 3). The results consist of
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