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a b s t r a c t

A novel solution to the estimation of catchment rainfall at a sub-hourly resolution from measured
streamflow is introduced and evaluated for two basins with markedly different flow pathways and
rainfall regimes. It combines a continuous-time transfer function model with regularised derivative
estimates obtained using a recursive method with capacity for handling missing data. The method has
general implications for off-line estimation of unknown inputs as well as robust estimation of de-
rivatives. It is compared with an existing approach using a range of model metrics, including residuals
analysis and visuals; and is shown to recover the salient features of the observed, sub-hourly rainfall,
sufficient to produce a precise estimate of streamflow, indistinguishable from the output of the catch-
ment model in response to the observed rainfall data. Results indicate potential for use of this method in
environment-related applications for periods lacking sub-hourly rainfall observations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Accurate simulation of stream hydrographs is strongly depen-
dent on the availability of rainfall data at a sufficiently high, sub-
daily sampling intensity (Hjelmfelt, 1981; Littlewood and Croke,
2013). Additionally, hydrograph simulation may be sensitive to
the spatial intensity of rainfall sampling (Ogden and Julien, 1994;
Bardossy and Das, 2008) or to the uncertainties arising from local
calibrations of rainfall radar (Cunha et al., 2012) or individual
raingauges (Yu et al., 1997). Despite this importance, most gauged
basins lack the necessary long-term, sub-hourly rainfall records
(and adequate spatial rainfall sampling) to combine with the
streamflow records that are, by contrast, typically monitored at
sub-hourly intervals for several decades. If those short-term rainfall
characteristics responsible for producing stream hydrographs (see
Eagleson, 1967; Obled et al., 1994) can be estimated from stream-
flow, the resultant synthetic rainfall series may be useful in many
applications. For example, synthetic rainfall records could be
derived for basins with long-term streamflow, but only short-term

rainfall, to: (1) evaluate long-term, rainfall estimates from Global
Circulation Models for specific catchments (see Fujihara et al.,
2008), (2) provide long-term rainfall records for long-term
aquatic ecology studies (e.g., Ormerod and Durance, 2009), and
(3) identify localised rainfall cells or snowfall events that affect the
streamflow but are poorly represented in raingauge records
(Kirchner, 2009).

This study uses a Data-Based Mechanistic (DBM) modelling
approach to identify linear Continuous-Time Transfer Function (CT-
TF) models (Young and Garnier, 2006) between sub-hourly rainfall
and streamflow. These forward CT-TF models are then inverted to
derive rainfall time-series using a novel method that utilises reg-
ularisation techniques. Algorithms within the CAPTAIN Toolbox
(Taylor et al., 2007) are used for this modelling and the method-
ology evaluated by application to two micro- or headwater-
catchments with contrasting rainfall and response characteristics,
namely the humid tropical Baru catchment and the humid
temperate Blind Beck catchment. Classical rainfallerunoff non-
linearity utilises a power law relationship between measured and
effective rainfall (Beven, 2011) implemented as a Hammerstein
type non-linearity (Wang and Henriksen, 1994) separated from the
linear dynamics of the transfer function. As the power function is
monotonic, it is easily inverted, making it trivial to apply in
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combination with the effective rainfall estimate generated by the
proposed method as illustrated in Fig. 1.

The graphical expression of the forward CT-TF model of a rain-
fallestreamflow response in discrete time is the impulse response
function and this is directly equivalent to the unit hydrograph or
UH developed by Sherman (1932). Inversion of the UH or its CT-TF
equivalent to derive rainfall from streamflow has been attempted
by Hino (1986), Croke (2006), Kirchner (2009), Andrews et al.
(2010) and Young and Sumisławska (2012). These studies have
used a range of different approaches. For example, Hino (1986)
applied a standard regularised Least Squares (LS) solution to the
inversion of a catchment model of ARX form (i.e., autoregressive
with exogenous variables: see Box et al., 2008). This approach dif-
fers from the CT-TF based approach proposed here, in that poten-
tially huge matrix inversions are needed. Kirchner (2009) used a
very different method that involved the construction of a first-
order, non-linear differential equation linking rainfall, evapora-
tion and streamflow through the sensitivity function, resulting in a
compoundmeasure of precipitation and evaporation, which is then
reduced to rainfall through making assumptions about the rela-
tionship between the rainfall and residual rainfall (i.e., rainfall
minus evaporation). Kirchner's method has been applied to the
Rietholzbach catchment in Switzerland (Teuling et al., 2010) and to
24 diverse catchments in Luxembourg (Krier et al., 2012) where it
reproduces the streamflow and storage dynamics for catchments
characterised by a single storageedischarge relationship but cannot
explain more complex travel times. Andrews et al. (2010) used in-
verse filtering, applying similar CAPTAIN modelling methods to the
ones proposed here, but using a direct inverse transfer function in
discrete time. As this is methodologically the nearest approach to
the proposed one and, at the same time, highlights the practical
problems with direct inversion of transfer function models, it was
chosen as a comparison in this study. Young and Sumisławska
(2012) applied non-minimal state-space feedback control
methods to inversion of discrete time transfer function models,
based on the work of Antsaklis (1978).

Jakeman and Young (1984) were the first to indicate that
recursive regularisation might be a useful approach to derive
rainfall time-series from the UH, but without offering an imple-
mentation of the algorithm or examples. The novel method pro-
posed here has been developed by combining these ideas with
developments in the identification of CT-TF models (e.g., Young and
Garnier, 2006) and improvements in the CAPTAIN routines (Taylor
et al., 2007). The inverse process is based on differentiation (Young,
2006), and somay be expected to be ill-posed and sensitive to noise
in the streamflow data (O'Sullivan, 1986; Neumaier, 1998;
Tarantola, 2005). The direct inverse of the discrete transfer

function method involves differencing, the key issue addressed in
the proposed method by using regularised derivatives, potentially
its major advantage.

The generality of our approach indicates that it could be used
within any modelling framework involving DBM or top-down
catchment modelling. Integrating it within other frameworks, for
instance to assess the information content of hydrological data
(Beven and Smith, 2014) is already a part of an existing project
which partly funded this study (NERC CREDIBLE project e see Ac-
knowledgements for details). Another good example of the use for
this approach would be within the hydromad framework
(Andrews et al., 2011) where it could be a part of either model or
data evaluation process. Such application could be based on the
reasoning that a model and data combo (the principle of DBM
approach), which invert well should bemore reliable (this assertion
will be the subject of future work). Within the same hydromad
framework a similar reasoning could be used to verify the place-
ment of raingauges within a catchment. If the inversion generates
poorly fitting inferred rainfall with many negative periods it could
indicate that the present raingauges do not provide full information
about the catchment rainfall due to their placement. Andrews et al.
(2011) also indicate the use of such inversion routines in calibration
of full hydrological models.

Reaching further out, beyond the discipline of hydrology, there
are many other situations where either input estimation of a dy-
namic system (e.g., Maquin, 1994; Yang and Wilde, 1988 and many
others), or more generally, robust derivative estimation problems
(De Brabanter et al., 2011) could benefit from the solution provided
here. The off-line character of the method, characteristic for
regularisation-based methods, excludes on-line applications, such
as input observers in control engineering, but provides more flex-
ibility, for instance by easy compensation of pure time delays in the
transfer functions.

2. Novel parsimonious method for input estimation using
reduced order output derivatives

To obtain a well-defined and effective inverse of any trans-
formation (e.g., UH or equivalently a TF), the transformation itself
must be well defined. It must capture the character of the system
without any unnecessary complexity that would result in the
transformation itself being ill-defined. This is the essence of the
philosophy of the Data-Based Mechanistic (DBM) approach of
Young (1998, 1999) that aims to produce models that fit the data
well with as few parameters as are necessary to capture the
dominant dynamic modes of the system. CAPTAIN tools are used to
identify models using this underlying philosophy.

a)

b)

Fig. 1. The use of Hammerstein-type non-linearity in the model identification (a) and inversion (b) processes where P is the observed rainfall, Pe is the effective rainfall, Q is the
observed streamflow, Peh is the inferred effective rainfall and Ph is the inferred rainfall with the non-linearity reapplied.
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