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a b s t r a c t

Spatial statistical stream-network models are useful for modelling physicochemical data, but to-date
have not been fit to macroinvertebrate data. Spatial stream-network models were fit to three macro-
invertebrate indices: percent pollution-tolerant taxa, taxa richness and the number of taxalacking out-of-
network movement (in-stream dispersers). We explored patterns of spatial autocorrelation in the indices
and found that the 1) relative strength of in-stream and Euclidean spatial autocorrelation varied between
indices; 2) spatial models outperformed non-spatial models; and 3) the spatial-weighting scheme used
to weight tributaries had a substantial impact on model performance for the in-stream dispersers; with
weights based on percent stream slope, used as a surrogate for velocity because of its potential effect on
dispersal and habitat heterogeneity, producing more accurate predictions than other spatial-weighting
schemes. These results demonstrate the flexibility of the modelling approach and its ability to account
for multi-scale patterns and processes within the aquatic and terrestrial landscape.

© 2014 Published by Elsevier Ltd.
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1. Introduction

Spatial autocorrelation represents the degree of spatial de-
pendency in measurements collected in geographic space. It is an
inherent characteristic of data collected in stream and river envi-
ronments, where longitudinal and lateral connectivity, nested
catchments, and broad-scale topographic and climatic gradients
produce multiple, multi-scale patterns of spatial autocorrelation
(Peterson et al., 2013). Spatial autocorrelation is often viewed as
problematic; when traditional, non-spatial models are used to
analyse spatially correlated data, it can lead to biased parameter
estimates and invalid statistical inferences (Legendre, 1993).
Alternatively, spatial statistical methods, such as geostatistical
modelling (i.e. universal kriging) can be used to model spatially
correlated data, account for influential covariates, and generate
predictions with valid estimates of uncertainty at non-sampled
locations (Cressie, 1993). These methods have recently been
extended to represent the unique spatial relationships in stream
networks (Ver Hoef et al., 2006; Ver Hoef and Peterson, 2010),
which include the branching structure of the dendritic network,
flow connectivity, the directionality of flow, and the 2-D terrestrial
environment within which the network is embedded (Peterson
et al., 2013). This provides a flexible modelling framework that
can be used to account for both in-stream and Euclidean patterns of
spatial autocorrelation in a single model (Peterson and Ver Hoef,
2010). Previous studies have been somewhat limited because
proximity is based solely on Euclidean distance (e.g. Bonada et al.,
2012; Shurin et al., 2009) or in-stream distance is used to study
spatial relationships along a single, non-branching channel (e.g.
Grenouillet et al., 2008).

Spatial stream-network models have been successfully applied
to a number of physicochemical indicators, including temperature
(Isaak et al., 2010; Jones et al., 2013; Ruesch et al., 2012), nitrate
(Gardner and McGlynn, 2009) and dissolved oxygen (Cressie et al.,
2006), as well as E. coli measurements (Money et al., 2009) and a
modelled fish index (Peterson and Ver Hoef, 2010). There is thus a
growing body of evidence suggesting that these methods are useful
for up-scaling site-based measurements collected on stream net-
works to provide a more continuous perspective of stream char-
acteristics (Cressie et al., 2006; Isaak et al., 2010; Money et al., 2009;
Peterson and Ver Hoef, 2010; Ruesch et al., 2012), which is crucial
for the spatial prioritization of management actions (Fausch et al.,
2002). In contrast to many physicochemical variables, macro-
invertebrate community indices are often strongly related to a
combination of local-scale physicochemical and biological condi-
tions (Downes et al., 1993; Minshall, 1984; Sawyer et al., 2004),
which suggests that spatial autocorrelation may not be as prevalent
in these data. Yet, many of these local-scale characteristics are
thought to be influenced by the interaction of broader-scale
network structure, geomorphology, and disturbance regimes
(Benda et al., 2004), as well as, water chemistry and land use
(Kratzer et al., 2006). Thus, it remains unclear whether this rela-
tively new family of spatial statistical models will be equally suit-
able for predicting biological variables, such as macroinvertebrate
indices, commonly used in broad-scale monitoring programs (e.g.
Munn�e and Prat, 2009; Smith et al., 2011).

Another important aspect of modelling spatial relationships in
stream networks is allowing for potential disjunctions at stream
confluences (Peterson et al., 2013). Confluence zones (i.e. stream
junctions) are biologically important elements of streams (Illies,
1961; Rice et al., 2006; Statzler and Higler, 1986), and have been
linked to changes in macroinvertebrate densities (Katano et al.,
2009; Rice et al., 2001). For example, Kiffney et al. (2006) found
that small streams funnel materials such as nutrients and woody
debris intowidermain stem channels, and that this produced peaks

in macroinvertebrate densities downstream of confluences; likely
due to increased productivity and habitat complexity. Small, steep
headwater streams may also be important drivers of downstream
food webs, through the entrainment of leaf litter, in northern
hemisphere streamswith deciduous riparian vegetation (Cummins,
1974; Vannote et al., 1980). However, Bunn et al. (1999) showed
that algae, rather than inputs of leaf litter, were the main driver of
macroinvertebrate food webs in northern Queensland, Australia,
where riparian vegetation tends to be evergreen. Furthermore,
while macroinvertebrates in the northern hemisphere are often
productive in small, steep headwater streams and drift down-
stream (Meyer et al., 2007), Australian studies have found that drift
is usually related to death or catastrophic events (e.g. flooding) and
may not be important for dispersal (Kerby et al., 1995). Although
there may be uncertainty about what is causing disjunctive bio-
logical conditions at confluences, it is clear is that those drivers may
be substantially different than those influencing physicochemical
discontinuities at confluences.

Spatial stream-network models account for potential disjunc-
tions at confluences using a spatial-weighting scheme that de-
termines the degree of influence that each converging stream
segment has on downstream locations (Peterson and Ver Hoef,
2010). To date, a spatial-weighting scheme based on Shreve's
stream order (Shreve, 1966) has been used to generate spatial
stream-network models (Cressie et al., 2006; Garreta et al., 2010),
as well as spatial weights based on catchment area (Gardner and
McGlynn, 2009; Isaak et al., 2010; Peterson et al., 2006; Peterson
and Ver Hoef, 2010; Ruesch et al., 2012). Note that, Shreve's
stream order has been used because it is additive, but Strahler's
stream order (Strahler, 1957) could also be used. Catchment area
and stream order have been used as surrogates for flow volume, a
conceptually intuitive approach for water quality, temperature and
fish because of the strong effects of longitudinal connectivity on
these variables. However, catchment area and Shreve's stream or-
der may not be as relevant for macroinvertebrates, which are
strongly affected by local characteristics (e.g., Downes et al., 2000).
In addition, there a variety of macroinvertebrate metrics including
trophic and dominance indices, diversity, richness, and composi-
tion metrics, as well as, indices designed to represent feeding
strategies, pollution tolerances, and habitat measures (Barbour
et al., 1999). There are also numerous ways to construct indices
within these categories and each index will have a metric-specific
response to environmental perturbation. It is therefore unlikely
that a single spatial-weighting scheme will be suitable in all cases
given the broad range of physicochemical and biological processes
affecting macroinvertebrate distribution and the diversity of
indices available.

In this analysis, we used spatial stream-network models to
explore patterns of spatial autocorrelation in a suite of macro-
invertebrate indices collected in the wet tropics of Queensland,
Australia. In particular, wewanted to test whether 1) accounting for
spatial autocorrelation improved the predictive power of the
models fit to biological indices; 2) patterns of spatial autocorrela-
tion differed depending on the macroinvertebrate index used; and
3) the choice of spatial-weighting scheme affected the predictive
power of the spatial model.

2. Materials and methods

2.1. Data and study area

Macroinvertebrate data were collected at 60 sites in July and September 2009
(austral winter) in a sub-catchment of the Tully River Basin in the Wet Tropics
bioregion of Queensland, Australia (Fig. 1). We collected data within a single season
because there is little evidence of seasonal variability in Australian macro-
invertebrate indices (Chessman et al., 1997; Marshall et al., 2001), which do not
receive seasonal pulses of litterfall and subsequent increases in nutrients and pro-
ductivity (Abelho and Graca,1996; Boulton and Brock,1999). The climate in the Tully
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