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a b s t r a c t

Nowadays, the control of fractional-order system is one of the most popular topics in control theory.
Recent studies have demonstrated the interest of fractional calculus both for systems modeling in many
areas of science and engineering and for robust controller design. Thus, several research contributions
have been devoted to the extension of control theory to fractional-order systems. Synergetic control
was introduced in power electronics and other industrial processes. The benefit of this control scheme
has been recognized for both integer-order linear and nonlinear systems. In this paper, a fractional-
order synergetic control for fractional-order systems is proposed. Both linear and nonlinear cases are
considered. The macro-variable is defined by the fractional-order integral of state variables. Optimality
and stability properties are analyzed. A numerical example is investigated to confirm the effectiveness of
the proposed method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

During the last two decades, considerable work has demon-
strated the interest of fractional-order differentiation and integra-
tion operators inmany areas of science and engineering. It has been
shown that the fractional differentiation operator permits one to
model,with greater accuracy, somephysical systemswhich exhibit
hereditary, diffusion, and viscoelasticity properties. Fractional dy-
namics can be encountered in various systems such as viscoelastic
materials, electrochemical processes, dielectric polarization, ther-
mal systems, transmission and acoustic, chaos and fractals, electri-
cal machines, andmany others. Several books (Kilbas, Srivastava, &
Trujillo, 2006; Monje, Chen, Vinagre, Xue, & Feliu, 2010; Podlubny,
1999a; Sabatier, Agrawal, &Machado, 2007) provide a good source
of references on fractional calculus and its applications.

Fractional-order integration and differentiation operators have
also received great attention in control theory. The main use of
these fractional-order operators lies in the design of fractional-
order controllers which enhance the robustness and the per-
formance of the controlled system. For linear systems, in the
frequency domain, a fractional-order Tilde Integral Derivative
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(TID) controller (Lune, 1994) and the well-known CRONE (Com-
mande Robuste Ordre Non Entier) controllers (Sabatier, Oustaloup,
Garcia Iturricha, & Lanusse, 2002) were the first to be devel-
oped. Later, the fractional-order PID controller (Podlubny, 1999b)
and the fractional-order robust PID controller (Monje et al., 2005)
were proposed. Other well-known control strategies designed for
integer-order systems have been extended to fractional-order sys-
tems. State-space fractional design methods based on pole place-
ment were developed in Farges, Moze, and Sabatier (2010).

The synergetic control scheme developed by Kolesnikov (2000)
has been successfully applied in many industrial applications,
mainly in the area of power systems (Kondratiev, Dougal, Santi, &
Veselov, 2004; Santi,Monti, Proddutur, &Dougal, 2003). Synergetic
control is a very attractive control strategy for nonlinear systems.
The objective of the control is to force the system to operate on
a manifold defined by a macro-variable. This macro-variable is
selected according to the control specification. When the system
trajectories reach the manifold, the system dynamics motion is
governed by a linear first-order differential equation (Jiang &
Dougal, 2004). Synergetic control shares with slidingmode control
(Utkin, 1992) the same objective to force the closed-loop system
to move on a desired manifold. Synergetic control operates at low
frequencies and it does not have chattering (Santi et al., 2003).
The reaching law is obtained to assure hitting the sliding surface
asymptotically. High-order sliding mode (Fridman & Levant, 1996)
can also prevent chattering by approaching the sliding manifold
asymptotically, as reported in Shtessel, Shkolnikov, and Brown
(2003). In Nusawardhama, Zak, and Crossley (2007), the authors
have shown that the synergetic control strategy for integer-order
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systems can be derived from the calculus of variations and that it
possesses optimality properties. In addition, with such synergetic
control, the speed of convergence to the sliding manifold can be
controlled. This is not the case for sliding mode control.

Structure variable controllers, including sliding mode control
techniques, are also considered within the context of fractional-
order differentiation operators. First, slidingmode control has been
applied to linear fractional-order systems (Calderon, Vinagre, &
Feliu, 2006; Efe, 2008; Si-Ammour, Djennoune, & Bettayeb, 2009).
However, limited work has been reported for the sliding mode
control of fractional nonlinear systems (Dadras & Momeni, 2010;
Tavazoei & Haeri, 2007). These contributions consider the first-
order sliding mode. Second-order sliding mode control has been
considered only for linear fractional-order systems (Pisano, Rapaić,
Jelićić, & Usai, 2010). On the other hand, in spite of the work
already done (Agrawal, 2004; Li & Chen, 2008), the optimal control
problems of fractional-order systems need to be investigated.

The objective of this paper is to develop a fractional-order opti-
mal synergetic control for fractional-order systems. Both nonlinear
and linear systems are considered. The contribution in this paper is
twofold. First, the proposed synergetic control law is an attractive
alternative for the control of nonlinear fractional-order systems.
Second, it offers a new solution to the optimal control of linear and
nonlinear fractional-order systems.

Starting from a fractional integral manifold as introduced in
Si-Ammour et al. (2009), we show that the fractional-order syn-
ergetic control is an optimal control law which minimizes a lin-
ear quadratic performance index. Even if the system is governed
by fractional-order nonlinear differential equations, the desired
dynamic of the macro-variable on the manifold is governed by a
first-order differential equation. The optimal closed-form solution
of the control law is easily obtained for both linear and nonlinear
fractional-order systems, compared to the solution proposed in Li
and Chen (2008) for the linear quadratic regulator (LQR) problem.
Finally, the stability of the closed-loop system is established.

The rest of the paper is organized as follows. In Section 2, defini-
tions of the fractional-order integral and derivative are recalled. In
Section 3, the optimal synergetic control for nonlinear fractional-
order systems is developed. The stability of the closed-loop sys-
tem is analyzed. Section 4 is devoted to linear fractional-order
systems. The synergetic fractional optimal control is constructed
and the stability of the closed-loop system is also established. In
Section 5, a numerical example is considered to test the efficiency
of the developed method.

2. Fractional differentiation and integration

Let L1[a b] denote the space of Lebesgue-integrable real-valued
functions f (t) of the variable t , which represents the time, on the
interval [a, b], a, b ∈ ℜ+, such that 0 ≤ a < b < ∞, and let ℜ+

denote the non-negative real numbers set. Let AC[a b] be the space
of functions f (t) which are continuous on [a b], and we denote by
ACk the space of real-valued functions f (t) which have continuous
derivatives up to order k − 1 such that f (k−1)(t) ∈ AC[a b], where
f (i)(t) is the ith integer-order derivative of f (t).

Definition 1 (Kilbas et al., 2006). Let f (t) ∈ L1[a b] be a function of
the variable t, t ∈ [a, b]. The fractional integral of order α ∈ ℜ+

is defined by the Riemann–Liouville integral

Iαa f (t) =
1

Γ (α)

 t

a
(t − τ)α−1f (τ )dτ , (1)

where the Euler Gamma function Γ (α) is defined as

Γ (α) =


∞

0
να−1e−νdν. (2)

Remark 1. Formula (1) is called the left-side fractional integral.
The right-side fractional integral has also been defined (Kilbas
et al., 2006). Integral (1) represents the convolution of the function
f (t) with the kernel function φ(t) =

tα−1

Γ (α)
.

Three definitions of fractional-order derivatives have been intro-
duced in the literature, namely the Riemann–Liouville derivative,
the Caputo derivative and the Grünwald–Letkinov derivative (Kil-
bas et al., 2006; Podlubny, 1999a). The Riemann–Liouville frac-
tional derivative is used in this paper. This derivative takes into
account more precisely the infinite-dimensional characteristic of
the system.

Let α ∈ ℜ+ be the fractional order of the derivative such that
s−1 < α < s; s denotes any integer and a denotes the initial time.

Definition 2 (Kilbas et al., 2006). The Riemann–Liouville fractional
derivative of order α of f (t) ∈ AC s

[a b]; t ∈ [a b] is defined as

RL
a Dα

t f (t) =
1

Γ (s − α)

ds

dts

 t

a
(t − τ)s−α−1f (τ )dτ . (3)

The initial time is taken to be zero. For simplicity, we use the
following notation:

Iα0 f (t) , Iα f (t)
RL
0 Dα

t f (t) , Dα f (t)

Df (t) ,
df (t)
dt

, ḟ (t).

Someuseful properties of theRiemann–Liouville fractional integral
and derivative are summarized below (Kilbas et al., 2006).

Proposition 1 (Kilbas et al., 2006). Let f (t) be a real-valued function
of the variable t ∈ [a b] ⊂ ℜ+. Then the following hold.

(1) I0f (t) = f (t) and Iα Iβ f (t) = Iα+β f (t), f (t) ∈ L1[a b], ∀α, β ∈

ℜ+.
(2) Dα Iβ f (t) = Dα−β f (t), ∀α, β ∈ ℜ+.
(3) Dα(c1f1(t) + c2f2(t)) = c1Dα f1(t) + c2Dα f2(t).

3. Optimal synergetic control for nonlinear fractional-order
systems

A fractional-order time-invariant nonlinear system is described
by a state-space representation which involves fractional deriva-
tives of state variables xi(t), i = 1, 2, . . . , n. Consider the class of
the nonlinear system

D[α]x(t) = f (x(t)) + g(x(t))u(t), (4)

where x(t) = [x1 x2 . . . xn]T ∈ ℜ
n denotes the n-dimensional state

vector, u(t) = [u1 u2 . . . um]T ∈ ℜ
m is the control input vector, and

D[α]
= [Dα1 Dα2 . . .Dαn ]T is the fractional differentiation vector op-

erator of orders αi ∈ ℜ+, i = 1, 2, . . . , n. If all orders αi are equal,
that isαi = α, i = 1, 2, . . . , n, then the system is called a commen-
surate fractional-order system (Matignon, 1998). Consider the case
of the commensurate fractional-order system described by

Dαx(t) = f (x(t)) + g(x(t))u(t), (5)

where Dαx(t) = [Dαx1 Dαx2 . . .Dαxn]T , f (x(t)) and g(x(t)) are
smooth vector fields for x(t) ∈ D ⊂ ℜ

n, where D is a compact
set containing the origin. α is the order of the derivative such that
0 < α < 1. We take the initial time t0 = 0. We assume that the
system was at rest at time a, −∞ < a < 0 and that the system
was initialized in the past, beginning at time a. As mentioned in
Hartley and Lorenzo (2002) and Sabatier, Merveillant, Malti, and
Oustaloup (2010), a fractional-order system requires complicated
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