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a b s t r a c t

Integrated assessment models for climate change (IAMs) couple representations of economic and natural
systems to identify and evaluate strategies for managing the effects of global climate change. In this
study we subject three policy scenarios from the globally-aggregated Dynamic Integrated model of
Climate and the Economy IAM to a comprehensive global sensitivity analysis using Sobol’ variance
decomposition. We focus on cost metrics representing diversions of economic resources from global
world production. Our study illustrates how the sensitivity ranking of model parameters differs for
alternative cost metrics, over time, and for different emission control strategies. This study contributes a
comprehensive illustration of the negative consequences associated with using a priori expert elicitations
to reduce the set of parameters analyzed in IAM uncertainty analysis. The results also provide a strong
argument for conducting comprehensive model diagnostics for IAMs that explicitly account for the
parameter interactions between the coupled natural and economic system components.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Climate change is one of the most challenging issues confront-
ing the scientific and policy communities. The National Research
Council (NRC, 2009) has called for advances in climate change de-
cision support that facilitate a “deliberation with analysis”
approach to the problem. A key aspect of “deliberation with anal-
ysis” is the need for frameworks that aid in identifying the key
uncertainties influencing the trade-off between near-term carbon
dioxide (CO2) mitigation costs and long-term risks posed by climate
change. A large body of literature has emerged seeking to better
characterize this trade-off using integrated assessment models
(IAMs) (Parson and Fisher-Vanden, 1997; Kelly and Kolstad, 1999).
IAMs seek to inform our understanding of the coupled natural and
economic systems that shape mitigation and adaptation decisions.

More formally, Kelly and Kolstad (1999) define an IAM as “. any
model which combines scientific and socio-economic aspects of
climate change primarily for the purpose of assessing policy op-
tions for climate change control”. For evaluating climate mitigation
strategies, IAMs must incorporate important aspects of the climate
system and the global economy, and yet be sufficiently transparent
to be useful for decision support (Kelly and Kolstad, 1999; Stanton
et al., 2009). For IAMs to be useful they need to advance our un-
derstanding of the linkages between economic activities, green-
house gas emissions, the carbon cycle, climate and damages
(Parson and Fisher-Vanden, 1997; Courtois, 2004; Stanton et al.,
2009; Weyant, 2009). Broadly there are two classes of IAMs
(Stanton et al., 2009): (1) inter-temporal optimization models, and
(2) simulation models. Inter-temporal optimization models seek to
identify a best future course based on global/regional welfare or
cost optimization. Optimality is typically defined in this class of
IAMs subject to an assumption of perfect foresight and the IAM
modeler’s expected state-of-the-world (SOW). Simulation (or
evaluation) models, instead, play out specific policy scenarios over
timewithout explicitly defining or seeking optimality. Both of these
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classes of IAMs are nonlinear and require large numbers of
externally-specified (exogenous) parameters to abstract the eco-
nomic and natural systems being modeled.

IAMs are now garnering significant roles in shaping climate
change impact projections and in the formulation of alternative
mitigation policies (IPCC, 1996; Stern, 2007; EPA, 2010, 2013; UNEP,
2010, 2011; NRC, 2011; Rogelj et al., 2011, 2013a,b). Many agencies
(EPA, 2009; EU, 2009) recommend that all models used for policy
development and analysis, including IAMs, be rigorously evaluated.
The challenges of evaluating IAMs, as has been reviewed over two
decades (Risbey et al., 1996; Stanton et al., 2009; Schwanitz, 2013),
include the potentially high degrees of model complexity, the de-
gree of integration and resolution of model components, and
incomplete knowledge of underlying processes and data. Efforts to
model the inherently unknown future behavior of complex, inter-
related systems have led to a focus on the uncertainties associ-
ated with framing possible futures. This is often done in the context
of community model inter-comparison exercises (e.g., Clarke et al.,
2009). Our study builds on additional guidance from broader
environmental modeling communities for improving diagnostic
assessments of complex environmental modeling systems (e.g.,
Jakeman et al., 2006; Gupta et al., 2008; Gudmundsson et al., 2012;
Kelly (Letcher) et al., 2013; Baroni and Tarantola, 2014).

Recently, Schwanitz (2013) outlines an evaluation framework
specifically for the IAM community. Included as one of the tools in
this evaluation framework, global sensitivity analysis has the po-
tential to attribute the uncertainty in an IAM’s projections to its
parameters, both individually and collectively (Saltelli et al., 2008).
To date, sensitivity analyses of IAMs focused on specific functions or
modules within a given model (Keller et al., 2004; Gillingham et al.,
2008; Ackerman et al., 2010) or on exploiting expert elicitations to
reduce the set of parameters to be analyzed with a local sensitivity
analysis (Peck and Teisberg, 1993; Prinn et al., 1999; Toth et al.,
2003). Recent studies that have applied global statistical sampling
to IAMs still confine sensitivity testing to a small subset of pa-
rameters within a limited Monte Carlo sampling (Pizer, 1999; Scott
et al., 1999; Goodess et al., 2003; Campolongo et al., 2007;
Nordhaus, 1994, 2008; Kypreos, 2008; Johansson, 2011). Overall
these analyses overlook the potential for multiple parameters in an
IAM to interactively influence the outcomes and, consequently,
may lead to incorrect inferences as to which parameters or factors
most strongly influence key uncertainties (Saltelli and D’Hombres,
2010).

We focus our sensitivity analysis on the globally-aggregated
IAM, the Dynamic Integrated model of Climate and the Economy
(DICE) (Nordhaus, 1994; Nordhaus and Boyer, 2000; Nordhaus,
2008), and extend the uncertainty and sensitivity analysis re-
ported in Nordhaus (2008). Our purpose is to demonstrate that for
IAMs, i.e., non-linear models with many exogenous parameters,
the uncertainties of model outputs can arise from complex
parameter interactions. DICE presents a simple, yet comprehen-
sive, representation of the world where alternative economy-
climate scenarios can be tested without having to explicitly
model the complexities of the global system. There are multiple
potential foci when designing a global sensitivity analysis of an
inter-temporal optimization IAM. The choice of the appropriate
experimental approach depends on the overall policy question to
be answered. For example, one question that might be explored is,
how do scenario pathways for a given stabilization goal change across
alternative SOWs? This problem is reflective of the majority of IAM
studies where the primary focus is on comparing the resulting
optimized policy scenario outcomes. Alternatively, we pursue in
this study the question, how vulnerable are specific optimized DICE
policy scenarios to uncertainties in the exogenous assumptions? By
isolating the policy scenarios from the optimization process, we

are exploring which exogenous parameters (e.g., population
growth, technology efficiency, climate sensitivity) control de-
viations from the policy costs attained under the assumption of
perfect information. We do not recalibrate the model to external
data sources for each sampled SOW, do not re-optimize the model
for each sampled SOW, and do not claim to assign likelihoods to
exogenous parameter combinations. Rather we measure how
exogenous parameters, individually and interactively, affect
selected policy-relevant model outputs. For a deterministic, per-
fect foresight model such as DICE, it is arguably quite useful to
know the vulnerabilities of a policy solution and to identify the key
model parameters that control its performance over time. Our
results could also inform subsequent calibration efforts or uncer-
tainty analyses by giving an improved a posteriori understanding of
complex, interactive parametric effects.

Here we use the cost benefit form (see Section 2.2 below) of the
DICE model as described in Nordhaus (2008). In this form of the
model a policy scenario outcome is characterized by the control
variables, emission control rates and investment, which optimize
the objective function, the sum of the discounted utility of con-
sumption over time, given the constraints applied, such as available
fossil fuel resources and limits to atmospheric temperature in-
creases. Emission pathways are endogenous in this form of the
model. A different (cost effectiveness) form of this model is
employed for the use of pre-specified emission control pathways
(Meinshausen et al., 2011a; Rogelj et al., 2012). See Appendix
Fig. A.9 for an example of a DICE policy scenario and resulting
emissions pathway.

For this study we construct a simulation version of DICE, called
CDICE, which reproduces DICE model outcomes for a supplied
policy scenario, given the reference values of all exogenous pa-
rameters. With this simulation model, we can explore the vulner-
ability of a fixed policy scenario to the uncertainty in the DICE
model’s exogenous parameters. We choose three distinctly
different DICE policy scenarios to see how parametric sensitivities
change for scenarios with different treatments of the trade-offs
between climate damages and abatement costs. In this study, we
apply the Sobol’ method, a global variance-based sensitivity anal-
ysis method (Sobol’, 2001; Saltelli et al., 2008), to CDICE simula-
tions of each policy scenario. Using the Sobol’ method, we choose
model outputs (in this case, climate damages and abatement costs)
for the analysis. We create ensembles of these model outputs by
iteratively running the CDICE simulation model while simulta-
neously varying a selection of model parameters over specified
ranges using Sobol’ quasi-random sampling. The Sobol’ method is
used to decompose the variance of the damage and abatement cost
outputs into portions contributed individually or interactively by
the sampled parameters.

This exercise demonstrates the importance of understanding
the non-separable, interactive parameter dependencies that con-
trol uncertain IAM projections. We also contrast our findings with
themore typical local sensitivity analysis as performed in Nordhaus
(2008). Our results illustrate the consequences of using a priori
expert elicitations to reduce the set of parameters analyzed, espe-
cially within the context of a one-at-a-time (OAT) sensitivity anal-
ysis. The results of this global sensitivity analysis provide a strong
argument for comprehensive model diagnostics for IAMs to
explicitly account for the parametric interactions between their
coupled natural and economic components. Moreover, this study
illustrates how the sensitivity ranking of model parameters differs
for alternative cost metrics, over time, and for alternative emission
control strategies.

In Section 2 we describe the DICE IAM and the CDICE simulation
model as well as the policy scenarios used in this study. Section 3
presents the methods used and descriptions of the computation
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