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a b s t r a c t

Stochastic time series models are very useful in many environmental domains. In this paper, an analytical
procedure for multi-site, multi-season streamflow generation using maximum entropy bootstrap sto-
chastic model (M3EB) is developed that can implicitly preserve both the spatial and temporal depen-
dence structure, in addition to the other statistical characteristics present in the historical time series.
The proposed model is computationally less demanding and simple in terms of modeling complexity.
The maximum entropy bootstrap (MEB) generates random samples from the empirical cumulative
distribution function (ECDF) and rearranges the random series based on the rank ordering of the his-
torical time series. The modeling structure of MEB implicitly satisfies the ergodic theorem (preservation
of summary statistics) and guarantees the reproduction of the time dependent structure of an underlying
process. The orthogonal transformation is used with M3EB to capture the spatial dependence present in
the multi-site collinear data. The performance of M3EB is verified by comparing the statistical charac-
teristics between the observed and synthetically generated streamflows. Three case studies from Colo-
rado River Basin, USA; Red River Basin, USA and Canada; and Cauvery River Basin, India; are used to
demonstrate the advantages of M3EB. The statistical measures adopted for evaluation of M3EB perfor-
mance include monthly statistics (mean, standard deviation and skewness), temporal and spatial cor-
relation, smoothing (flows other than present in historical data) and extrapolation (flows outside the
range of historical data). The M3EB model shows (i) a high level of accuracy in preserving the statistics;
and (ii) a high computational efficiency. Since M3EB can be used for multiple variable problems, the
model can be easily extended to other environmental or hydroclimatic time series data.

© 2014 Elsevier Ltd. All rights reserved.

Software availability section

The source code for M3EB model developed in this paper is
available. The implementation of the program is
discussed later in the paper.:

Name of the software: M3EB
Developer: Facility for Intelligent Decision Support (FIDS), The

University of Western Ontario, Canada
Contact: Roshan K. Srivastav; Slobodan P. Simonovic, Department of

Civil and Environmental Engineering, The University of
Western Ontario, Canada. roshan1979@gmail.com;
simonovic@uwo.ca

Year first available: 2013
Availability: Upon request for research purpose
Implementation: R, MATLAB

1. Introduction

Uncertainty in environmental or hydrologic systems results
from the variability associated with the natural processes, not
consistent and sufficiently accurate measurements, and deficiency
in our knowledge of physical processes and their interactions. The
uncertainty present in the time series is captured by synthetically
generating the likely patterns (replicates) that mimic the underly-
ing process of the historical time series. These patterns are required
for modeling in many environmental domains including air pollu-
tion, management of storage reservoirs, wind load studies, water
drainage infrastructure design etc (Keyser et al., 2010; Srivastav
et al., 2011; Ailliot and Monbet, 2012; Rodriguez et al., 2013). In
this paper we consider generation of multi-site multi-variate sto-
chastic streamflows which are useful in water resources infra-
structure planning, design and operations.

The stochastic models used in the simulation of multi-site
multi-season streamflows can be classified as: (i) parametric
models which have linear dependence structure (Box and Jenkins,
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1976; Salas and Boes, 1980; Bras and Rodriguez-Iturbe, 1985;
Bender and Simonovic, 1994); (ii) parametric disaggregation
models which attempt to model the dependence structure at the
various spatial and temporal scales (Valencia and Schaake, 1973;
Mejia and Rousselle, 1976; Grygier and Stedinger, 1988; Lane and
Frevert, 1990); (iii) semi-parametric models (Srinivas and
Srinivasan, 2001a,b, 2006; Lee et al., 2010; Salas and Lee, 2010;
Srivastav et al., 2011); (iv) non-parametric models (Lall and
Sharma, 1996; Sharma et al., 1997; Srinivas and Srinivasan, 2005;
Westra et al., 2007; Keylock, 2012; Lee, 2012) and (v) non-
parametric disaggregation models (Tarboton et al., 1998; Prairie
et al., 2007).

Although many developments have taken place in the field of
stochastic simulation of multi-site multi-season streamflow time
series over the last two decades, the acceptance of these models
among the researchers and practicing engineers is found to be
limited. The potential reasons may be: (i) modeling complexity
(steps involved); (ii) mathematical complexity; (iii) model selection
(order of model); (iv) parameter estimation; and (v) computational
burden (CPU time). In addition, accurate preservation of statistical
characteristics and spatial and temporal dependence structure in
case of multi-site multi-season streamflows has been posing a
persistent challenge to the modelers. In this study, the authors
extend the multi-site multi-variate MEB based weather generator
introduced by Srivastav and Simonovic (2014) and present an
analytical procedure for its implementation. The main character-
istics of the multi-site multi-season maximum entropy bootstrap
(M3EB) based stochastic streamflow model are (i) simple and
robust model structure; (ii) reliable performance (ability to pre-
serves complex underlying processes); and (iii) computationally
efficient algorithm. Further, the proposed method guarantees
limited extrapolation beyond extremes. The seasonality present in
the historical data is implicitly handled by the proposed model
without seasonal detrending.

The main objectives of the paper are to: (i) present the M3EB
stochastic model for generation of multi-site multi-season
streamflows (ii) demonstrate model's ability to reproduce the
complex statistical characteristics present in the historical
streamflows; (iii) present analytical implementation procedure in
R-programming environment; and (iv) illustrate model imple-
mentation using three case studies. The M3EB model combines the
strengths of maximum entropy bootstrap with orthogonal trans-
formations to capture the underlying dynamics of multi-site multi-
season streamflows. The maximum entropy bootstrap (MEB) is
intended to capture the temporal dependence and other statistical
characteristics of the data. In order to capture the spatial correla-
tion present in the multi-site collinear data we adopt orthogonal
transformation.

Maximum Entropy Bootstrap (MEB) is a nonparametric model
that can generate replicates from non-stationary time series and
does not depend on reshuffling/resampling of data (either random/
conditional), which is the most common approach used by tradi-
tional bootstrapping methods. Generation of synthetic replicates
using MEB model involves two main steps: (i) use of empirical
cumulative distribution function (ECDF) for random sampling; and
then (ii) rearranging the samples to preserve temporal dependence
structure. The modeling structure of MEB allows it to mimic short-
term, long-term and/or cyclic temporal dependence structure
present in the historical time series. The use of ECDF allows limited
extrapolation and smoothing of the generated replicates. Vinod
(2006) first introduced MEB modeling approach to generate syn-
thetic replicates using economic time series. Subsequently, due to
its inherent advantages over traditional bootstrap techniques, MEB
has been applied in various studies (Cook and Buckley, 2009; Vinod
and Lopez-de-Lacalle, 2009; Barbosa et al., 2011; Cook et al., 2013;

Yalta, 2013). Very few studies have adopted MEB to model hydro-
logical time series and have been restricted to assessment of un-
certainty (Cook and Buckley, 2009; Barbosa et al., 2011; Cook et al.,
2013). Cook and Buckley (2009) applied MEB to assess the uncer-
tainty in the cumulative probability distributions for single-site
precipitation series. Barbosa et al. (2011) using MEB modeled
changes in air temperature and assessed the uncertainty in esti-
mation of distribution of slopes from quantile regression. Recently,
Cook et al. (2013) adopted MEB to capture the uncertainty in the
reconstructed Upper Indus river flow from tree rings data. The
strengths of MEB modeling are: (i) ability to reproduce any tem-
poral correlation structure (Vinod, 2006; Vinod and Lopez-de-
Lacalle, 2009); (ii) computational efficiency; and (iii) no need for
detrending or differencing of the time series. Recently, the authors
developed a novel multivariate MEB modeling approach (Srivastav
and Simonovic, 2014) to model weather data and demonstrated its
superiority to kNN based weather generator in terms of preserva-
tion of statistical characteristics of data and computational effi-
ciency. In this study, the multivariate MEB modeling approach is
extended to generation of multi-site multi-season streamflow time
series. The model combines (i) MEB to capture the temporal and
other statistics and (ii) orthogonal transformation to capture the
spatial statistics.

Orthogonal transformation converts the multivariate collinear
data variables into linearly decorrelated variables (principal com-
ponents) arranged in terms of explained variance (highest to
lowest). The use of orthogonal transformation for generation of
synthetic data has very limited application in hydrology. Smith
et al. (1996) applied principal component analysis (PCA) to
generate monthly sea surface temperature (SST) in frequency
domain, later extended by Caron and O'Brien (1998). They showed
that the method is able to preserve historical statistics very well. All
the principal components were used for generation of synthetic
data and were divided into red noise and white noise components.
Similarly, Dreveton and Guillou (2004) used PCA for single-site
mean temperature series, in which all the principal components
are assumed to be random process. The mean temperature series
had to be detrended before the application of PCA. The identifica-
tion of red noise and white noise components leads to subjectivity
and adds to computational burden directly proportional to a
number of variables. Recently, Westra et al. (2007) used both
principal component analysis and independent component anal-
ysis to generate multivariate replicates for hydrologic time series. It
was found that the above approach would lead to underestimation
of temporal correlation (Lee, 2012). To overcome this limitation, Lee
(2012) adopted autoregressive (AR(1)) model for generation of
synthetic time series. The PCA based methods use all the compo-
nents for generation of synthetic data and therefore are computa-
tionally intensive for larger number of variables e very common in
multi-site or multi-variate hydrologic time series (Westra et al.,
2007; Lee, 2012). In this paper, we use the orthogonal trans-
formation to capture the functional relationship between the
multivariate data (spatial correlation between the streamflow sites)
and decorrelate the data in transformed space.

To best of our knowledge, no studies have been reported to have
used MEB in modeling of multi-site multi-season streamflow time
series. The proposed model is based on a computationally very
efficient algorithm. The inherent strengths of the model include
ability to reproduce any time dependence structure (short-term
and/or long-term) and implement a simple set of modeling steps.

The rest of the paper is organized as follows. Section 2 presents
the M3EB algorithm and software details. Section 3 provides the
details of three case studies used. The results and discussion of the
proposed M3EB streamflow generator is presented in Section 4. In
this section the efficacy of the M3EB model is brought out in terms
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