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a b s t r a c t

This paper presents a computational framework for incorporation of disparate information from
observed hydrologic responses at multiple locations into the calibration of watershed models. The
framework consists of three components: 1) an a-priori characterization of system behavior; 2) a formal
and statistically valid formulation of objective function(s) of model errors; and 3) an optimization engine
to determine the Pareto-optimal front for the selected objectives. The proposed framework was applied
for calibration of the Soil and Water Assessment Tool (SWAT) in the Eagle Creek Watershed, Indiana, USA
using three single objective optimization methods [Shuffled Complex Evolution (SCE), Dynamically
Dimensioned Search (DDS), and DiffeRential Evolution Adaptive Metropolis (DREAM)], and one multi-
objective optimization method. Solutions were classified into behavioral and non-behavioral using
percent bias and NasheSutcliffe model efficiency coefficient. The results showed that aggregation of
streamflow and NOx (NO3-N þ NO2-N) information measured at multiple locations within the watershed
into a single measure of weighted errors resulted in faster convergence to a solution with a lower overall
objective function value than using multiple measures of information. However, the DREAM method
solution was the only one among the three single objective optimization methods considered in this
study that satisfied the conditions defined for characterizing system behavior. In particular, aggregation
of streamflow and NOx responses undermined finding “very good” behavioral solutions for NOx, pri-
marily because of the significantly larger number of observations for streamflow. Aggregation of only
NOx responses into a single measure expedited finding better solutions although aggregation of data
from nested sites appeared to be inappropriate because of correlated errors. This study demonstrates the
importance of hydrologic and water quality data availability at multiple locations, and also highlights the
use of multiobjective approaches for proper calibration of watershed models that are used for pollutant
source identification and watershed management.

Published by Elsevier Ltd.

1. Introduction

Watershed models are increasingly embedded in the decision
making process to address a wide range of hydrologic and water
quality issues. In the United States, federal law requires individual
states to develop total maximum daily loads (TMDLs) for impaired
water bodies to attain ambient water quality standards through the

control of point and nonpoint sources (NRC, 2001). Similarly, the
European Water Framework Directive aims to enhance the water
quality status of all water bodies within its jurisdiction (Kaika,
2003). Environmental simulation models play a central role in
successful implementation of watershedmanagement programs by
providing the means to assess the relative contribution of different
sources (i.e., stressors) to the impairment (Ahmadi et al., 2014b).
Therefore, it is of keen interest to evaluate the performance validity
of watershed models according to the past observations of fluxes of
water and contaminants at multiple locations on the stream
network. In most cases, daily or more frequent discharge mea-
surements are available at watershed outlets on many rivers and
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streams. On the other hand, nutrient concentrations are often
measured by local watershed groups on less frequent time steps
(e.g., weekly or monthly) at the smaller subwatershed level.

Application of models that credibly represent important pro-
cesses of the natural system presents a scientific challenge (Ahmadi
et al., 2014a; Konikow and Bredehoeft, 1992). With the temptation
to incorporate more parameters in models to represent a broader
range of hydrologic and water quality processes has come an
insidious effect: the ever-increasing complexity of model struc-
tures. Therefore, efficient and effective use of observed data is vital
for calibration of complex spatially distributed process-based
models. The literature is replete with application of automated
calibration methods to minimize the error between observed and
modeled values. However, an important and often neglected issue
in calibration of complex models of the environment is that while
optimization techniques facilitate the search for solutions with
minimum errors, they do not necessarily ascertain model adequacy
for mimicking the observed behavior of the system (Matthews
et al., 2011). System behavior is often defined according to spe-
cific model application goals and characteristics of model and data
(Bennett et al., 2013; Moriasi et al., 2007). For example, ambient
water quality standards for nutrients and pesticides are expressed
in terms of average annual responses. Thus, when models are used
to support nutrient or pesticide TMDL, statistical measures such as
average annual errors as a percentage of observed responses are
used in the selection of final model parameters. Mean, minimum,
peaks, variance, distribution, skewness, and trends of data are
commonly used indicators of system behavior.

On the other hand, hydrologic and water quality observations
are characterized by varying measurement errors and un-
certainties, varying sample size, and are typically non-
commensurable (Willems, 2009). These considerations must be
taken into account when using observed data in construction of the
proper likelihood function(s) for calibration purposes (Ahmadi
et al., 2014a; Beven and Binley, 1992; Beven and Freer, 2001;
Mantovan and Todini, 2006; Sorooshian and Dracup, 1980;
Willems, 2009). The effectiveness of parameter estimation tech-
niques depends greatly on the selection of proper likelihood
function. There is an ongoing debate in the scientific community on
the use of either a formal or informal likelihood function for cali-
bration of hydrologic models (Beven et al., 2012; Clark et al., 2011;
Mantovan and Todini, 2006; McMillan and Clark, 2009; Stedinger
et al., 2008; Vrugt et al., 2009). Model performance is usually
evaluated (based on subjective judgment of the analyst) against
informal likelihood measures such as the Nash and Sutcliffe (1970)
model efficiency coefficient or percent bias. Alternatively, formal
likelihood functions are based on a strict assumptions about the
structure of residuals represented by a statistical model (Beven
et al., 2012). The use of a formal Bayesian-based likelihood func-
tion can provide more acceptable and statistically valid prediction
intervals for future observations (Stedinger et al., 2008) and may
result in a better coverage of observed data and more acceptable
posterior distribution of parameters (Vrugt et al., 2009). However,
in the context of watershed management, a statistically valid like-
lihood function may not exist (Beven, 2006; Gupta et al., 1998). On
the other hand, Beven et al. (2007) and Beven (2008) showed that
the formal Bayesian identification of models can be considered as a
special case of generalized likelihood uncertainty estimation
(GLUE) and is applicable if a strong assumption about the nature of
the modeling errors can be made.

Overall, both formal and informal likelihood functions have
their strengths and weaknesses. Both approaches could result in
similar exploration of the parameter space, estimation of para-
metric uncertainty, and representation of the observed behavior of
the system under study (McMillan and Clark, 2009; Vrugt et al.,

2009). Automatic calibration procedures are often employed us-
ing formal likelihood measures, but the final choice of parameter
values will always depend on informal/subjective measures that
adequately capture analyst preferences. Thus, a successful calibra-
tion approach should identify models that represent behavior of
the system in addition to finding the minimum error. The scientific
literature contains numerous studies on noncommensurable
measures of performance for classification of model parameter sets
as behavioral (i.e., good or acceptable) or non-behavioral (i.e., bad
or unacceptable) solutions (see, for instance, Beven and Binley,
1992; Blazkova and Beven, 2009; Klepper et al., 1991; Nash and
Sutcliffe, 1970; Spear and Hornberger, 1980).

Model calibration at multiple sites and for many responses is
inherently a multiobjective problem (Gupta et al., 1998; Madsen,
2003). Multiobjective optimization approaches enable the analyst
to assess trade-offs associated with conflicting objectives and
determine a set of nondominated solutions that comprise the
Pareto-optimal front. The Nondominated Sorted Genetic Algorithm
II (NSGA-II) (Deb, 2001) is a commonly used multiobjective
approach. The complexity of multiobjective methods increases
substantially with an increasing number of objectives in the opti-
mization problems. Typically, these methods require more model
simulations than single objective techniques for convergence and
are more difficult to implement. Single objective optimization
methods are diverse, computationally less intensive, easier to
visualize, easier for statistically analyze, and less prone to search
process stagnation. Therefore, an analyst may opt to use a single
aggregated objective function of weighted errors; however, this can
lead to loss of important information from some of the observations
(Fenicia et al., 2008). The Shuffled Complex Evolutionary (SCE) al-
gorithm (Duan et al., 1992), Markov Chain Monte Carlo (MCMC)
methods such as DiffeRential Evolution Adaptive Metropolis
(DREAM) (Vrugt et al., 2009), and Dynamically Dimensioned Search
(DDS) (Tolson and Shoemaker, 2007) are among the most popular
single objective optimization methods for calibration of hydrolog-
ical models. Several software applications have been developed to
facilitate implementation of single objective and multiobjective
optimization algorithms for watershed model analysis. For
example, Wu and Liu (2012) developed a framework (R-SWAT-
FME) for calibration, sensitivity, and uncertainty analysis of the Soil
andWater Assessment Tool (SWAT, Arnold et al., 2011). Zhang et al.
(2013) developed a Python-based calibration package (PP-SWAT)
for calibration of SWAT using a parallel computing technique and
the “A Multi-method Genetically Adaptive Multiobjective Optimi-
zation Algorithm” (AMALGAM, Vrugt and Robinson, 2007).

While considerable progress has been made in addressing sys-
tem behavior, formal vs. informal likelihood functions, and single
objective vs. multiobjective optimization approaches individually,
there is little if any research in the literature that addresses these
issues in an integrated fashion. The primary goal of this study is to
present a computational framework for multisite multiobjective
calibration of watershed models that integrates the strengths of
both formal likelihood functions and informal measures of model
performance. The proposed framework is a complementary
approach and includes use of system behavior definition for clas-
sification of the optimal solution(s) based on the model application
objectives. Two specific objectives are examined en-route to the
overall goal of the study: 1) develop an integrated approach that
uses a formal likelihood function to identify models with minimum
errors and subjective-informal statistical measures that incorporate
user-specified priorities to represent behavior of the system; and 2)
demonstrate the utility of the proposed approach using a real-
world case study that evaluates the effectiveness of single objec-
tive and multiobjective optimization approaches in generating
optimal solutions consistent with model application purpose.
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