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a b s t r a c t

Recently the problem of estimating the initial state of some linear infinite-dimensional systems from
measurements on a finite interval was solved by using the sequence of forward and backward ob-
servers Ramdani, Tucsnak, and Weiss (2010). In the present paper, we introduce a direct Lyapunov ap-
proach to the problem and extend the results to the class of semilinear systems governed by wave and
beam equations with boundary measurements from a finite interval. We first design forward observers
and derive Linear Matrix Inequalities (LMIs) for the exponential stability of the estimation errors. Further
we obtain simple finite-dimensional conditions in terms of LMIs for an upper bound T ∗ on the minimal
time, that guarantees the convergence of the sequence of forward and backward observers on [0, T ∗

] for
the initial state recovering. This T ∗ represents also an upper bound on the observability time. For observa-
tion times bigger than T ∗, these LMIs give upper bounds on the convergence rate of the iterative algorithm
in the norm defined by the Lyapunov functions. In our approach, T ∗ is found as theminimal dwelling time
for the switched exponentially stable (forward and backward estimation error) systemswith the different
Lyapunov functions (Liberzon, 2003). The efficiency of the results is illustrated by numerical examples.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Estimation of the initial state of a distributed parameter sys-
tem from its input and output functionsmeasured over some finite
time interval is an important problem in engineering, oceanogra-
phy, meteorology and medical imaging (see e.g. Ramdani et al.,
2010, and the references therein). For the linear exactly observ-
able distributed parameter system, the initial state can be re-
covered from the measured segment of the input and output
functions by inverting the Gramian operator of the system (see, for
instance Tucsnak & Weiss, 2009, Section 6.1), and this may be nu-
merically very challenging. However, this is not applicable to non-
linear systems.

Recently the problem of estimating the initial state of some
infinite-dimensional systems frommeasurements on a finite inter-
val has been solved by using a sequence of forward and backward
observers (Auroux & Nodet, 2012; Ramdani et al., 2010). For finite-
dimensional systems this idea has appeared in Auroux and Blum
(2005). In Ramdani et al. (2010) the condition on the convergence
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of the iterative procedure is given in terms of the bounds on the
norms of the semigroups generated by the operators of the forward
and backward estimation error equations. It is not easy to find the
latter bounds. Moreover, the results of Ramdani et al. (2010) (and
the convergence results of Auroux & Nodet, 2012) are confined to
the linear time-invariant case.

It is of interest to develop consistentmethods that are capable of
utilizing nonlinear distributed parameter models and of providing
simple conditions for the convergence of forward and backward
observers. The LMI approach (Boyd, El Ghaoui, Feron, & Balakrish-
nan, 1994) is definitely among such methods. For time-delay sys-
tems, this approach allowed to solve various control problems in
terms of simple finite-dimensional conditions (see e.g. Fridman &
Shaked, 2002; Gu, Kharitonov, & Chen, 2003; Richard, 2003, and
the references therein). Its extension to distributed parameter sys-
tems has been started in Fridman and Orlov (2009a,b).

The LMI approach to observers and initial state recovering
of distributed parameter systems is the primary concern of the
present paper, where we consider semilinear 1-d wave and beam
equations. We start with the design of forward observers and de-
rive LMIs for the exponential stability of the estimation errors.
Though the stability of the beam equation has been studied in
the literature via direct Lyapunov method (see e.g. Guo & Yang,
2009; Krstic, Guo, Balogh, & Smyshlyaev, 2008), these are the first
LMIs for the exponential stability. Their derivation is based on
Wirtinger’s inequality (Hardy, Littlewood, & Polya, 1934) and on
the application of the S-procedure (Yakubovich, 1977).
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Further we find LMIs that give an upper bound T ∗ on the mini-
mal time, that guarantees the convergence of the sequence of for-
ward and backward observers on [0, T ∗

] for the recovery of the
initial state. This T ∗ represents also an upper bound on the exact
observability time. The continuous dependence of the recon-
structed initial state on the measurements follows from the in-
tegral input-to-state stability of the corresponding error system
(see Angeli, Sontag, & Wang, 2000), which is guaranteed by the
LMIs for the exponential stability. For observation times larger than
T ∗, these LMIs give upper bounds on the convergence rate of the
iterative algorithm in the norm defined by the Lyapunov func-
tions. Finding T ∗ is similar to finding theminimal dwelling time for
the switched exponentially stable systemswith different Lyapunov
functions (Liberzon, 2003). It appears that the LMIs are not conser-
vative for the linear homogeneous wave equation recovering the
analytical value of the minimal observability time. Some prelimi-
nary results for wave equations were presented in Fridman (2013).

1.1. Notation and preliminaries

Throughout the paper Rn denotes the n dimensional Euclidean
space with the norm | · |, the notation P > 0 with P ∈ Rn×n means
that P is symmetric and positive definite. The symmetric elements
of the symmetric matrix will be denoted by ∗. Functions, continu-
ous (continuously differentiable) in all arguments, are referred to
as of class C (of class C1). L2(0, 1) is the Hilbert space of square in-
tegrable functions z(ξ), ξ ∈ [0, 1] with the corresponding norm

∥z∥L2 =

 1
0 z2(ξ)dξ . H 1(0, 1) is the Sobolev space of absolutely

continuous scalar functions z : [0, 1] → R with dz
dξ ∈ L2(0, 1).

H 2(0, 1) is the Sobolev space of scalar functions z : [0, 1] → R
with absolutely continuous dz

dξ and with d2z
dξ2

∈ L2(0, 1).
The following inequalities will be useful:

Lemma 1.1. Let z ∈ H 1(0, 1) be a scalar function with z(0) = 0 or
z(1) = 0. Then Wirtinger’s inequality holds (Hardy et al., 1934) 1

0
z2(x)dx ≤

4
π2

 1

0
z2x (x)dx. (1.1)

Moreover,

max
x∈[0,1]

z2(x) ≤

 1

0
z2x (x)dx. (1.2)

2. Observers and initial state recovering: wave equation

2.1. Observers for semilinear wave equations

Consider the following one-dimensional semilinearwave equa-
tion

ztt(x, t) =
∂

∂x
[a(x)zx(x, t)] + f (zx(x, t), x, t),

t ≥ t0, x ∈ (0, 1), (2.1)

under the boundary conditions

z(0, t) = 0, zx(1, t) = 0. (2.2)

Here subscripts denote the corresponding partial derivatives, f is a
C2 function with uniformly bounded first partial derivatives in the
two first variables.

The initial conditions are given by

z(x, t0) = z1(x), z1(0) = 0, z1x(1) = 0,
zt(x, t0) = z2(x).

(2.3)

The smooth function a(x) satisfies the following inequalities:

0 < a(1) ≤ a(x), ax(x) ≤ 0, ∀x ∈ (0, 1). (2.4)

Let g1 > 0 be the known bound on the derivative of f (ξ , x, t)with
respect to the first argument:

|fξ (ξ , x, t)| ≤ g1 ∀(ξ , x, t) ∈ R3. (2.5)

The boundary measurements are given by y(t) = zt(1, t), t ≥ t0.
The boundary-value problem (2.1), (2.2) can be represented

as an abstract differential equation by defining the state ζ (t) =

[ζ1(t) ζ2(t)]T = [z(t) zt(t)]T and the operators

A =

 0 I
∂

∂x


a(x)

∂

∂x


0

 , F(ζ , t) =


0

F1(ζ1, t)


,

where F1 : H 1
× R → L2(0, 1) is defined as F1(ζ1, t) = f (ζ1x(x),

x, t) so that it is continuous in t for each ζ1 ∈ H 1. The differential
equation is

ζ̇ (t) = A ζ (t)+ F(ζ (t), t), t ≥ t0 (2.6)

in the Hilbert space H = H 1
L (0, 1)× L2(0, 1), where

H 1
L (0, 1) =


ζ1 ∈ H 1(0, 1)|ζ1(0) = 0


and ∥ζ∥2

H = ∥ζ1x∥
2
L2

+ ∥ζ2∥
2
L2
. The operator A with the dense

domain

D(A ) =


(ζ1, ζ2)

T
∈ H 2(0, 1)


H 1

L (0, 1)

× H 1
L (0, 1)

ζ1x(1) = 0


ism-dissipative and hence it generates a strongly continuous con-
traction semigroup T (Pazy, 1983). Due to (2.5) the following Lip-
schitz condition holds:

∥F1(ζ1, t)− F1(ζ̄1, t)∥L2 ≤ g1∥ζ1x − ζ̄1x∥L2 (2.7)

where ζ1, ζ̄1 ∈ H 1
L (0, 1), t ∈ R. Then by Theorem 6.1.2 of Pazy

(1983), a unique continuous mild solution ζ (·) of (2.6) in H ini-
tialized by

ζ1(t0) = z1 ∈ H 1
L (0, 1), ζ2(t0) = z2 ∈ L2(0, 1), (2.8)

i.e. a unique solution of the integral equation

ζ (t) = T(t − t0)ζ (t0)+

 t

t0
T(t − s)F(ζ (s), s)ds (2.9)

exists in C([t0,∞),H ). Moreover, this solution is locally Lipschitz
in the initial state (i.e. for all T > 0 themapping (z1, z2) → ζ is Lip-
schitz from H to C([t0, T ],H )). Note that F : H × [t0,∞) → H

is continuously differentiable. If ζ (t0) ∈ D(A ), then thismild solu-
tion is in C1([t0,∞),H ) and it is a classical solution of (2.1), (2.2)
with ζ (t) ∈ D(A ) (see Theorem 6.1.5 of Pazy, 1983).

We suggest a nonlinear Luenberger type observer of the form

ẑtt(x, t) =
∂

∂x
[a(x)ẑx(x, t)] + f (ẑx(x, t), x, t),

t ≥ t0, x ∈ (0, 1) (2.10)

under the boundary conditions

ẑ(0, t) = 0, ẑx(1, t) = k[y(t)− ẑt(1, t)], (2.11)

and the initial conditions [ẑ(·, t0), ẑt(·, t0)]T ∈ H , where k > 0
is the injection gain. The well-posedness of (2.10), (2.11) will be
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