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a b s t r a c t

Multi-layer perceptron artificial neural networks are used extensively in hydrological and water re-
sources modelling. However, a significant limitation with their application is that it is difficult to
determine the optimal model structure. General regression neural networks (GRNNs) overcome this
limitation, as their model structure is fixed. However, there has been limited investigation into the best
way to estimate the parameters of GRNNs within water resources applications. In order to address this
shortcoming, the performance of nine different estimation methods for the GRNN smoothing parameter
is assessed in terms of accuracy and computational efficiency for a number of synthetic and measured
data sets with distinct properties. Of these methods, five are based on bandwidth estimators used in
kernel density estimation, and four are based on single and multivariable calibration strategies. In total,
5674 GRNN models are developed and preliminary guidelines for the selection of GRNN parameter
estimation methods are provided and tested.

© 2014 Elsevier Ltd. All rights reserved.

Software availability

Software name: GRNNs
Developer: Xuyuan Li, Postgraduate Student, the University of

Adelaide, School of Civil, Environmental & Mining
Engineering, Adelaide, SA 5005, Australia

Phone: þ61 8 8313 1575
Fax: þ61 8 8303 4359
Email: xli@civeng.adelaide.edu.au
Hardware requirements: 64-bit AMD64, 64-bit Intel 64 or 32-

bit �86 processor-based workstation or server with one
or more single core or multi-core microprocessors; all
versions of Visual Studio 2012, 2010 and 2008 are
supported except Visual Studio Express; 256 MB RAM

Software requirements: PGI Visual Fortran 2003 or later version
Language: English
Size: 4.74 MB

Availability: Free to download for research purposes from the
following website:http://www.ecms.adelaide.edu.au/
civeng/research/water/software/generalised-regression-
neural-network/

1. Introduction

Over the last two decades, artificial neural networks (ANNs)
have been used extensively in the field of hydrological and water
resources modelling, and their popularity is still increasing (Maier
et al., 2010; Abrahart et al., 2012; Wu et al., 2014). In the vast ma-
jority of these applications, multi-layer perceptrons (MLPs) have
been used as the most common model architecture (Maier et al.,
2010; Wu et al., 2014). While the use of MLPs has generally resul-
ted in good model performance, their development is complicated
by the fact that there are no rigorous methods for determining an
appropriate model structure. Determination of the optimal number
of hidden nodes is especially difficult, unless sophisticated Bayesian
approaches are used (Kingston et al., 2008; Zhang et al., 2011),
which are computationally demanding and require substantial
technical expertise to implement. Therefore, the optimal model
structure is generally determined by trial and error (Maier et al.,
2010; Wu et al., 2014). This process usually involves a number of
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steps, including (i) selection of a trial model structure, (ii) calibra-
tion of the model with the selected structure, and (iii) evaluation of
the predictive performance of the calibrated model. These steps are
repeated for models with different trial structures and the model
structure that results in the best predictive performance is selected.
Consequently, the model structure that is found to be optimal is a
function of a number of factors, including:

(i) The trial model structures selected for evaluation: As the po-
tential number of different model structures is generally
large, the performance of a subset of all possible structures is
usually evaluated. This can be achieved using different ap-
proaches, including ad-hoc, stepwise (e.g. constructive,
pruning) or global approaches (Maier et al., 2010). Conse-
quently, as different approaches generally result in the
evaluation of different model structures, the structure ob-
tained is a function of the adopted approach.

(ii) The calibration method used: The predictive performance of a
model with a particular structure is a function of the quality
of the calibration (training) process. Finding the combination
of model parameters (connectionweights) that gives the best
predictive performance for a given network structure is
complicated by the presence of a large number of local op-
tima in the error surface (Kingston et al., 2005a). This is
particularly the case if gradient-based calibration (training)
methods are used (Maier and Dandy, 1999), such as the most
commonly used back-propagation algorithm (Maier et al.,
2010; Wu et al., 2014). In addition to the choice of calibra-
tion (training) methods, the parameters that control the
searching behaviour of these methods (e.g. learning rate and
momentum when the back-propagation algorithm is used)
can also have a significant impact on the best predictive
model performance obtained for a particular model structure
(Maier and Dandy, 1998a,b). Consequently, unless the pre-
dictive performance that corresponds to the global optimum
in the error surface can be identified for all models with
different structures, it is not possible to identify whichmodel
structure results in the best predictive performance with
certainty. As a result, the optimal model structure obtained is
a function of the quality of the model calibration process.

(iii) The calibration data used: The available data are generally
split into different subsets for calibration (training) and
validation, which can be done using a number of different
methods (see Maier et al., 2010). Consequently, which data
points are included in the different subsets can vary,
depending on which data division method is used (Bowden
et al., 2002; May et al., 2010; Wu et al., 2012, 2013). This
can also have an impact onwhichmodel structure is found to
result in the best predictive performance. This is because
different data points will result in different error surfaces
during calibration, thereby potentially affecting calibration
difficulty [see (ii)] and producing different global and local
optima, which is likely to change which model structure
results in the lowest error.

Given the factors described above, it is generally not possible to
isolate the impact of model structure on the predictive perfor-
mance of MLPs, making it difficult to know which model structure
should be used. In addition, the trial-and-error process generally
used to determine the optimal structure of MLPs is computationally
expensive, as it necessitates the development of a potentially large
number of models.

Although there are other alternative ANN based approaches,
including Radial Basis Functions (RBFs) (Buhmann, 2003),
Recurrent Neural Networks (RNNs) (Williams and Zipser, 1989)

and Probabilistic Neural Networks (PNNs) (Specht, 1990), Gen-
eral regression neural networks (GRNNs) (Specht, 1991) provide
an alternative ANN model structure that has been shown to
perform well in a number of studies in water resources appli-
cations (e.g. Bowden et al., 2005b, 2006; Gibbs et al., 2006;
Cigizoglu and Alp, 2006) and overcomes the shortcomings
associated with MLPs discussed above, as the structure of GRNNs
is fixed (Bowden et al., 2005a). This removes the ambiguity
associated with determining which model structure is optimal.
In addition, it increases the computational efficiency of the
model development process, as there is no need to develop a
number of models with different structures in order to deter-
mine which is optimal.

However, a potential issue with the application of GRNNs to
hydrological and water resources problems is that there has been
limited work on determining which smoothing parameter esti-
mation methods should be adopted. As GRNNs are essentially a
Nadaraya-Watson kernel regression method (Cai, 2001),
parameter estimation only involves the determination of optimal
values of one or more smoothing parameters, also known as
kernel bandwidths. However, this is not a trivial issue, as illus-
trated by the vast amount of literature on kernel bandwidth
estimation as applied to density estimation (e.g. Rudemo, 1982;
Bowman, 1984; Scott and Terrell, 1987; Park and Marron, 1990;
Hall et al., 1992; Wand and Jones, 1995). Overestimating the
smoothing parameter can result in over-smoothing of the esti-
mated density (i.e. kernel based probability density function
(PDF)). In this case, the detailed local information (for instance
the variation of daily rainfall in hydrological applications) will
not be captured in the estimated density. In contrast, if values of
the smoothing parameter are underestimated, the general trend
of the estimated density (for instance the overall rainfall trend
within a given time period) can be disturbed by localised fea-
tures or noise.

Among the extensive literature on smoothing parameter (or
kernel bandwidth) estimation in other areas of research, such as
mathematics and statistics, there are a number of different ap-
proaches to obtaining optimal estimates of kernel density, which
are based on assumptions about the form of the PDF and
different fitness function types (i.e. the objective function on
which the estimator is based). Consequently, their relative
merits for determining the optimal values of the smoothing
parameters for water resources GRNN models are likely to vary
from case study to case study, depending on the distribution of
the data and the modelling objective function used. However,
the relationship between the performance of GRNNs with
smoothing parameters obtained using different kernel density
estimation methods and the properties of the water resources
data used to develop them has not been considered previously,
making it difficult to know which methods to use for particular
case studies.

Therefore, the objectives of the current study are: (i) to
compare the performance, in terms of both predictive accuracy
and computational cost, of GRNN models for which smoothing
parameters have been estimated using a range of methods, as
well as that of a benchmark MLP model, for case studies with data
that have varying degrees of normality, linearity and different
modelling objectives (e.g. matching average or extreme events);
and (ii) to develop and test empirical guidelines for the selection
of the most appropriate methods for GRNN smoothing parameter
estimation based on the properties of the available data (i.e.
degree of normality and non-linearity) and the modelling
objective.

The remainder of this paper is organised as follows. A brief
introduction to GRNNs is provided in Section 2, followed by the
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