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a b s t r a c t

To assist in interpreting the hydrodynamics of a complex coastal environment, a Self Organizing Map
(SOM) has been constructed using output from a three-dimensional hydrodynamic model of the Huon-
D’Entrecasteaux region in South-East Tasmania, over a one-year period. Interpretation of the SOM
enabled nine characteristic or prototype states to be identified. As expected, the dominant forcing
mechanisms were freshwater input via riverine discharge and input from oceanic waters. While these
mechanisms are well understood, subtle features associated with the interaction of the two forcing
mechanisms and the transitions between meta-stable states, were revealed by visualizing the SOM
output. Further investigation was undertaken to determine how effective the SOM would be in identi-
fying these prototype states given sensor data from a sensor network being designed for future
deployment within the region. This research has demonstrated that SOM analysis can be a useful tool for
identifying and interpreting patterns in large oceanographic datasets.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As anthropogenic pressures on the coastal marine environment
increase, managers and policy makers are formulating adaptive
management strategies based upon quantitative scientific studies.
Underpinning many of these studies is the integration of models
and observations, using both qualitative (Wild-Allen et al., 2010)
and quantitative (Ward et al., 2010) techniques. This has resulted in
a phenomenal increase in the amount of observational data and
model output that needs to be interpreted. Data assimilation
techniques using Bayesian Inference (Parslow et al., 2013) andmore
approximate methods (Margvelashvili et al., 2013) allow for a
robust statistical method to combine models and observational
data. We are then confronted with the problem of analysing and
interpreting the enormous datasets that are produced, in order to
learn as much as possible from the data contained within them.

Traditional methods of interpreting model output through
model-data assessments and comparisons are computationally
demanding and difficult to visualise in 3D. Automated procedures

utilising technological advances in machine learning and data-
mining (Liu and Weisberg, 2005; Liu et al., 2009; Jin et al., 2010;
Liu and Weisberg, 2011; Williams et al., 2012) are being adopted,
yielding valuable information in identifying dynamics relevant to
seasonal and climate time-scales.

As observing systems mature, and observational datasets are
being received in near real-time from in situ sensor networks and
satellite remote sensing, these datasets are being assimilated into
coastal models. The observations andmodels then form the basis of
coastal information systems that are being deployed in regional
and national contexts in many coastal areas around the world. An
example of one such system within Australia is the INFORMD sys-
tem in South-East Tasmania (Margvelashvili et al., 2010), which is
now being applied on a regional scale to the Great Barrier Reef
Region, in a multi-organisation collaborative project entitled eReefs
(www.barrierreef.org/OurProjects/eReefs.aspx). Similar systems
are now operational in Europe (www.myocean.eu.org) and the US
(www.ioos.noaa.gov). A common theme within these projects is
the fact that the amount of data and model output being produced
is increasing rapidly and better tools are required to interpret the
model output and distil the information required to reveal the
underlying dynamics of the systems of interest.

The overall goal of this study was to demonstrate the use of
competitive-learning pattern recognition techniques to interpret
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the dynamics in a coastal system where we presently have a good
understanding of the different environmental conditions and their
drivers.

In order to demonstrate this, we used an unsupervised
competitive learning neural network algorithm called the Self-
Organizing Map or SOM (Section 2.3) to identify prototype states
exhibited by the Huon Estuary e D’Entrecasteaux Channel coastal
region of South-East Tasmania over a one-year period from 1st
March 2008 to 28th February 2009 (Section 2.3).

Once these prototype states had been identified, we trained a
supervised competitive-learning neural network, the Learning
Vector Quantization (LVQ) network (Section 2.4), to predict these
prototype states from simulated real-time sensor data, in an effort
to evaluate the effectiveness of different sensor network designs
that may potentially be deployed across the Huon-D’Entrecasteaux
coastal region (Fig. 1).

It is anticipated that strategic developments from this study will
lead to the design and development of pattern recognition systems
for use in larger more complex regions in which the underlying
hydrodynamic factors involved are less well understood.

2. Methods

2.1. Computational modelling of ocean environments

While observations provided by a wide variety of ocean observing instruments
can yield information about the present and past state of the system, they are
generally unable to forecast future states. Therefore, computational models that are
able to simulate alternative management scenarios and make predictions are a very
important tool to develop effective adaptive management scenarios.

As part of a world-wide research effort to develop and refine ocean models, the
Coastal Environmental Modelling team (www.emg.cmar.csiro.au) at CSIRO Marine
and Atmospheric Research (CMAR), in Hobart, have developed the Sparse Hydro-
dynamic Ocean Code (SHOC)model. SHOC is a finite difference hydrodynamic model,
based on an orthogonal curvilinear grid, capable of predicting three-dimensional
distributions of temperature and salinity, as well as current velocity and direction,
over scales ranging from estuaries to regional ocean domains, given appropriate
inputs such as wind speed and direction, atmospheric pressure, surface heat fluxes
and tides (Herzfeld et al., 2010).

The SHOC model has, over recent years, been applied to the south-east coastal
region of Tasmania (Fig. 2). This coastal region includes two major estuaries, the
Derwent estuary and the Huon estuary, linked by the D’Entrecasteaux Channel
(Butler, 2006). It exhibits complex oceanographic behaviour because of the fact that
two major ocean currents, the South Australia Current (SAC), which flows down the
west coast of Tasmania, and the East Australia Current (EAC), which flows down its
east coast, converge within the region. Also of interest is the contrast between the
twomajor estuaries in the region; the Derwent estuary has suffered from significant
urban pollution in the past, while the Huon estuary is in nearly pristine condition. In
addition the D’Entrecasteaux Channel hosts a wide variety of recreational activities,
including boating and fishing and also has a large and economically important
aquaculture industry (Timms et al., 2010). Collectively, these very different coastal
sub-regions provide an excellent test-bed for research into the sustainable man-
agement of coastal marine environments (Jones et al., 2012).

2.2. Pattern recognition in oceanography

Until recently, data collection within the oceanography field was difficult and
the computational power available to oceanographers to analyse their data limited.
This meant that oceanographic data analysis techniques were oriented toward
deriving scarce information from small and homogeneous datasets using analysis
techniques which were economical in their computational requirements. However
the increasing volume and diversity of oceanographic data now becoming available
threatens to overwhelm these techniques because they cannot easily discover new

and unexpected patterns, trends and relationships hidden within large spatial
datasets (Miller and Han, 2009).

Similar trends have been occurring in a number of scientific fields and, in
response to this, new computational analysis techniques are being developed to
extract features, trends and insights from the huge datasets now being produced by
modern technologies, such as remote sensing satellites and ocean observatories.
These techniques, some derived from traditional statistical methods and others from
a branch of computer science called machine learning, automatically recognise new
and unexpected patternswithin data. These patterns can often be used subsequently
by scientists to formulate or confirm hypotheses (Liu and Weisberg, 2011).

Statistical methods have been used extensively in the past to identify patterns in
scientific data. They are mathematically rigorous and have been successfully applied
to pattern recognition tasks in many scientific fields, including oceanography.
However they generally assume that the data being analysed can be represented, at
least approximately, using standard probability distributions. One popular example
is time-series data analysis (Box et al., 2008).

The complexity and non-linearity of many of the processes underlying the
environmental sciences mean that traditional statistical methods have limited
application within these fields (Liu and Weisberg, 2005). Because of this, pattern
recognition techniques employing methods derived from the field of machine
learning are being evaluated by researchers to see what part they may play in
environmental science research. They are non-linear methods and do not depend on
the assumptions that traditional statistical techniques make about the datasets
being analysed.

Within the machine learning field various pattern recognition techniques have
been developed by computationally modelling some of the neurological processes
known to underpin the pattern recognition capabilities of the human brain. Such
models are called artificial neural networks because theymimic the behaviour of the
networks of biological neurons, within our brain, which underlie our thinking
processes (Dayhoff, 1990). Such techniques have an inherent ability to recognise
non-linear relationships and are robust in the face of noisy and incomplete data,
rendering them very suitable for use within the environmental sciences (Reusch
et al., 2005; Haupt et al., 2009; Hsieh, 2009).

The most common type of neural network used within the environmental sci-
ences to date has been a classification network called the back-propagation neural
network (Wu et al., 2006), but over recent years a competitive-learning network
called the Self-Organizing Map (SOM) has begun to generate significant interest
(Cavaros, 2000; Tambouratzis and Tambouratzis, 2008; Shanmuganathan et al.,
2006; Agarwal and Skupin, 2008; Kalteh et al., 2008; Morioka et al., 2010). SOMs
have been applied successfully in coastal oceanography (Richardson et al., 2002,
2003; Demarcq et al., 2008; Jin et al., 2010; Iskandar, 2010) and have been used to
analyse numerical ocean circulation model output (Iskandar et al., 2008; Liu et al.,
2009). They have also been applied to a wide range of other environmental
modelling applications in recent years, including waste water treatment plant
operation (Dürrenmatt and Gujer, 2012; Liukkonen et al., 2013), reconstruction of
past climatic conditions (Friedel, 2012), modelling crop evapotranspiration (Adeloye
et al., 2012), groundwater transport (Friedel and Iwashita, 2013) and benzene
pollution (Strebel et al., 2013), and constructing computational policy simulations
for natural hazard mitigation (Samarasinghe and Strickert, 2013).

2.3. The Self-Organizing Map (SOM)

The SOM is an artificial neural network model (Kohonen,1995) which can create
a spatially organized representation of data closely resembling the ordered maps of
cells observed within the cortex of the human brain, where cells near to each other
respond to similar sensory inputs. The spatial proximity of these brain cells within
the cortex reflect significant relationships between the input signals to which each
responds. A SOM is a two-layer neural network (Fig. 3) with an input layer consisting
of n nodes (assuming that the network is intended to analyse n-dimensional data-
sets) and an output layer containing a specified number of nodes arranged (usually)
in a two-dimensional grid structure. The number of nodes M in the output layer is
determined by the data analyst and depends on the level of detail required in the
analysis. Each output node i is connected to each input node via a weighted link and
so associated with each output node is an n-dimensional weight vector wi con-
taining the weights of the links between this output node and all of the input nodes
(Richardson et al., 2003). Adjacent nodes on the output grid are called neighbours.

Before the training process commences, the network weight vectors wi are
initialized, usually with random starting weights (random initialisation), although in

Fig. 1. Hybrid pattern recognition process that uses an unsupervised competitive-learning algorithm, the SOM (Section 2.3), to identify prototype hydrodynamic states and then
trains an LVQ network (Section2.4), a supervised competitive-learning algorithm, to predict these prototype states from real-time sensor data.
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