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a b s t r a c t

In environmental soil-landscape modeling (ESLM), the selection of predictive variables is commonly
contingent on the researchers’ domain expertise on soileenvironment processes. This variable selection
strategy may suffer bias or even fail in regions where the process knowledge is insufficient. To overcome
this problem, this study demonstrates a holistic ESLM framework which consists of five components:
model conceptualization, data compilation, process identification, parsimonious model calibration, and
model validation. Based on the STEP-AWBH conceptual model, a comprehensive pool of 210 potential
environmental variables that exhaustively cover pedogenic and environmental factors was constructed.
This was followed by strategic variable selection and development of parsimonious prediction models
using machine learning techniques. The all-relevant variable selection successfully identified the major
and minor factors relevant to the SOC variation, showing that the major factors important for explaining
SOC variation in Florida were vegetation and soil water gradient. Topography and climate showed
moderate effects on SOC variation. Parsimonious SOC models developed using four minimal-optimal
variable selection techniques and simulated annealing yielded optimal predictive performance with
minimal model complexity. The holistic ESLM framework not only provides a new view of selecting and
utilizing variables for predicting soil properties but can also assist in identifying the underlying processes
of soil-environment systems of interest. Due to the flexibility of the framework to incorporate various
types of variable selection and modeling techniques, the holistic environmental modeling strategy can be
generalized to other environmental modeling domains for both prediction and process identification.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental soil-landscape modeling (ESLM) is a useful tool
for predicting soil properties and classes and understanding the
relationships between soils and the environmental factors
(Grunwald, 2005). The ESLM lays its foundation on work by Jenny
(1941) and V.V. Dokuchaev (Glinka, 1927) who conceptualized the
soil formation as a function of five factors, i.e., CLimate, Organism,
Relief, Parent material, and Time (CLORPT model). It has been un-
dergoing additional development over the past decades. McBratney
et al. (2003) first encapsulated the conceptual model into a quan-
titative framework with the SCORPAN model which describes the
relationships between soil and environmental factors for the pur-
pose of spatial prediction of soils. For the past century, human ac-
tivities have been influencing the environment, exerting critical

impact on the pedosphere in terms of soil formation, change, and
degradation (Richter et al., 2011). In response, the STEP-AWBH
model (S: soil, T: topography, E: ecology, P: parent material, A:
Atmosphere, W: Water, B: Biota, H, Human) was devised to
explicitly model the effects induced by human activity on the soil
system (Grunwald et al., 2011; Thompson et al., 2012).

It is a common practice in ESLM that the environmental factors
are selected based on the researchers’ domain knowledge of the
soileenvironment processes in the study area (Florinsky et al.,
2002; Grunwald, 2009). This variable selection strategy heavily
relies on the legitimacy of the researchers’ knowledge. In some
cases when the process knowledge is not comprehensive, a limited
set of predictor variables could lead to biased and suboptimal
model performance (Grunwald, 2009). Therefore, it is necessary to
adopt a more unbiased strategy that allows models to access a
broad set of environmental variables that represent a spectrum of
possible soil-forming processes operating in a given landscape. The
more exhaustive such a set of predictive variables is, the higher the* Corresponding author. Tel.: þ1 352 294 3145.
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potential is to unravel complex soileenvironmental interactions
and identify an unbiased, optimal model to predict a soil property
of interest. Just as Jakeman et al. (2006) argued, a good practice in
the development of environmental models should embrace alter-
native model families and structures to allow model comparison
that avoids biased or even false conclusions drawn from a certain
model favored by the model developer(s). Poggio et al. (2013) used
stepwise methods to select the most predictive variables from a
large pool of satellite-derived variables in a regional application of
mapping properties, however their covariate scope was confined in
Digital Elevation Model (DEM) and vegetation indices derived from
Moderate-Resolution Imaging Spectroradiometer (MODIS) prod-
ucts while other important factors (e.g., soil, atmosphere, water)
were not considered.

With the advance of Geographic Information Systems (GIS),
Global Positioning System (GPS), and remote and proximal sensing
technologies, it is feasible to build a comprehensive pool of spatially
exhaustive environmental variables to characterize a full spectrum
of environmental properties. These spatially explicit environmental
datasets are available in much more abundance and finer spatial
resolutions when compared with more sparsely sampled soil
pedon data. In that sense, digital environmental covariates serve as
critical predictors to infer on soil properties, although it is usually
not knownwhich combination of the environmental predictors has
the highest predictive power in a given geographic region due to
their scale dependent behavior (Vasques et al., 2012). It should be
noted that collecting a large set of predictive variables for models
can potentially be problematic as well. Some key issues are
redundancy and collinearity between the variables, and the dele-
terious effects of noisy or non-informative variables. Strategic var-
iable selection is required to identify the major ecosystem
processes and identify parsimonious predictive models (Guyon and
Elisseeff, 2003). In addition, variable selection can reduce model
development and application time, increase model interpretability,
and reduce overfitting (Belanche-Muñoz and Blanch, 2008; May
et al., 2008). Variable selection has been an important research
topic in machine learning. It involves two problems e minimal-
optimal and all-relevant. The former is aimed at searching for the
minimum set of predictor variables yielding the best prediction
accuracy (Guyon and Elisseeff, 2003; Nilsson et al., 2007), while the
latter is focused on finding all-relevant variables to the target
property. Therefore, the minimal-optimal set is of special interest
for developing predictive models, while the all-relevant set has
great value in understanding the mechanisms underlying the soile
environment relationship. Nilsson et al. (2007) gave an in-depth
discussion about the relationships between the two problems and
showed that the minimal-optimal set is a subset of the all-relevant
set when the data conforms to the strictly positive distribution
which is the case for most data encountered in practical applica-
tions (Fig. 1).

Environmental variables that represent soil-landscape pro-
cesses may come as different data types, generally continuous and
categorical (including ordinal and nominal). Categorical variables
(e.g., land use and geology type) discretize observations (samples)
into unbalanced groups and may impose problems for model
validation and predictions. A common approach in model valida-
tion is data-division, in which the observation data are split into
calibration and validation sets (Bennett et al., 2013). The split of
data may result in some classes of a categorical predictor under-
represented or not represented by the calibration set, which can
lead to poor predictions or failed predictions for the underrepre-
sented or non-represented classes. The same issues related to
modeling using categorical predictors can occur in validationmode.
The occurrence of this problem increase exponentially as the
number of categorical variables included in a model increases.

Therefore, it worthwhile to pay special attention to the categorical
variables in ESLM and build models that strike the balance between
model performance and the number of categorical variables used.

Soil organic carbon (SOC) is a key property that not only in-
dicates soil quality but also has profound significance to the global
climate system (Trumbore et al., 1996). Thus, the focus of this study
is to model SOC in Florida, USA. The aim of the study was to
demonstrate a new holistic ESLM strategy based on a compre-
hensive environmental variable pool using variable selection
techniques that serve two purposes e revealing the underlying
processes and making predictions of SOC. It involves five steps e

model conceptualization, data compilation, process identification,
predictive model calibration and model validation (Fig. 2). The
specific objectives are threefold: 1) from a comprehensive set of
environmental variables, identify an all-relevant set of variables of
topsoil SOC in order to reveal the underlying SOC processes; 2) from
the all-relevant set, identify the minimal-optimal sets that simplify
models and optimize model performance for prediction; 3) explore
the possibility of reducing the use of categorical variables in pre-
dictive models.

2. Materials and methods

2.1. Study area

The study area is the state of Florida, located in the southeastern region of the
United States, with latitudes from 24�270 N to 31�000 N and longitudes from 80�020

W to 87�380 W. Florida covers approximately 150,000 km2 (United States Census
Bureau, 2000). The climate is humid and subtropical in northern and central Flor-
ida and is humid and tropical in southern Florida. The mean annual precipitation of
Florida is 1373 mm and the mean annual temperature is 22.3 �C (National Climatic
Data Center, 2008). Overall, soils in Florida are sandy in texture. Dominant soil or-
ders of Florida are: Spodosols (32%), Entisols (22%), Ultisols (19%), Alfisols (13%), and
Histosols (11%). Most frequent soil subgroups are: Aeric Alaquods, Ultic Alaquods,
Lamellic Quartzipsamments, Typic Quartzipsamments, and Arenic Glossaqualfs
(Natural Resources Conservation Service, 2009). Land use and land cover consists
mainly of wetland (28%), pinelands (18%), urban and barren lands (15%), agriculture
(9%), rangelands (9%), and improved pasture (8%) (Florida Fish and Wildlife
Conservation Commission, 2003). Florida’s topography is muted with gentle
slopes varying from 0 to 5% in almost the whole State (Fig. 3) (United States
Geological Survey, 1999).

2.2. Soil organic carbon data

A total of 1080 soil samples in the topsoil (0e20 cm) across Florida (Fig. 3) were
collected between 2008 and 2010 based on a random sampling design stratified by
the combination of soil suborder and reclassified LULC (Table 1). The number of
samples designated to each stratum is proportional to the area of the strata. The
reclassification of LULC is based on the data produced by Florida Fish and Wildlife
Conservation Commission (2003). Essentially, the original LULC classes with
similar soil moisture regime were generalized into a broader class. The purpose of
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Fig. 1. Topological representation of variable sets. The circle denotes all variables, the
dashed line all-relevant set and the dotted line the minimal-optimal set. The figure was
redrawn based on Nilsson et al. (2007).
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