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a b s t r a c t

Stochastic groundwater models enable the characterization of geological uncertainty. Often the major
source of uncertainty is not related to aquifer heterogeneity, but to the general shape of the aquifer. This
is especially the case in paleovalley-type alluvial aquifers where the bedrock surface limits the extent of
easily extractable groundwater. Determining the shape of a bedrock surface is not straightforward,
because it is typically non-stationary and defined by few data points that are generally far apart. This
paper presents a new workflow for the stochastic reconstruction of bedrock surfaces using limited
datasets that are typically available for aquifer characterization. The method is based on a lateral
propagation of basement cross-sections interpreted from geophysical surveys, and conditions the
reconstructed surface to existing well-log data and digital elevation model. To alleviate the typical
limitations of sparse data, we use an analog approach to incorporate prior geological knowledge. We test
the methodology on a synthetic example and a dataset from an alluvial aquifer in Northern Chile. Results
of these case studies show that the algorithm is capable of enforcing the general notion of structural
continuity, with the aquifer shape being conceptualized as an elongated, continuous and connected
valley-shaped body. Our method captures the large-scale topographic features of fluvial incision into
bedrock and the uncertainty in the positioning of the surface. Small-scale spatial variability is incor-
porated using Sequential Gaussian Simulation informed by geological analogs. Being stochastic, the
methodology allows characterization of the uncertainty associated with positioning of the bedrock
surface, by generating an ensemble of models via a Monte-Carlo analysis. This makes it possible to
quantify the uncertainty associated with estimating the aquifer volume. We also discuss how this
methodology may be used to better quantify the influence of uncertainty associated with defining the
aquifer geometry on water resource assessment and management.

� 2013 Elsevier Ltd. All rights reserved.

Software availability

Name of software: stochastic paleovalley interpolation V 1.0
Availability and cost: freeware downloadable from: https://github.

com/juancastilla/Paleovalley-Modelling.git including
documentation and demo datasets. The program is
available as a set of Matlab functions and scripts. SGEMS

and mgstat are open-source software and can be
downloaded at no cost from the developers’ website.

Developers: Juan Carlos Castilla-Rho, Gregoire Mariethoz
Contact address: School of Civil and Environmental Engineering,

University of New South Wales, Kensington Campus,
Sydney, NSW 2052, Australia

Phone: þ61 (0) 478074291
Email: j.castilla@unsw.edu.au
Hardware required: 32- or 64-bit PC with Windows or Mac OS. We

recommend a high-speed processor and at least 4 GB of
RAM.

Software required: Matlab R2012b, mGstat geostatistical toolbox
(http://mgstat.sourceforge.net), SGEMS geostatistical
modelling software (http://sgems.sourceforge.net)
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1. Introduction

The lack of spatial information is a prevalent issue for scientists
and practitioners needing to assemble 3D models of geological
regions. While carefully designed studies should rely on dense data
collection campaigns, in practice economic and technical con-
straints often result in poor control of the quality and spatial
arrangement of the data. Hydrogeology is particularly affected by
this problem, as information mainly originates from localized data
that sample a very small portion of the geological region of interest.
In addition, subsurface morphology is usually heterogeneous,
anisotropic and non-stationary. Furthermore, geoscientists can
produce a range of interpretations from a single dataset, hence
introducing knowledge bias and interpretational uncertainties
(Bond et al., 2007). For all these reasons, geological uncertainty is
often large, and significant research efforts are aimed at quantifying
and capturing it for 3D structural, volumetric, facies and flow
modeling applications.

Alluvial aquifers or basins are often modeled as a filling
sequence overlying a bedrock surface (Hoyos et al., 2012; Jaireth
et al., 2010; Whiteley, 2005). Their conceptualization is therefore
controlled by the shape and geomorphology of the underlying
structure, typically defined by a paleovalley bedrock surface. The
aquifer then constitutes the permeable units of the unconsolidated
sediments that overlie low permeability consolidated deposits or
bedrock. However, the inherent limitations of geological datasets
can make the task of characterizing bedrock surfaces challenging.
This has significant implications for defining the transmissivity
distribution in the aquifer or even for simpler characterization
such as estimating the total volume of porous material in the
reservoir.

Geostatistics is a widely used framework for making predictions
at unmeasured locations from limited and sparsely arranged data.
Geosciences and water resources rely heavily on geostatistics for
spatial interpolation, with frequent use of kriging in its various
forms (Li and Heap, 2011). A limitation of kriging is that it relies on
assumptions of stationarity and smoothness, and limited repre-
sentation of anisotropy (such as zonal anisotropy). Although
traditional geostatistical methods can include data sources such as
digital elevation models (DEMs), wells and geophysics, it is often
found that representing complex geometries of geological systems
is difficult (Neuweiler and Vogel, 2007; Zinn and Harvey, 2003).
These issues are general and arise when working on structures
having characteristics of non-stationary and meandering geome-
tries, such as 3D groundwater models demanding realistic bedrock
surfaces. Some of the approaches that have been proposed to
model geological complexity include multiple-point statistics
(Guardiano and Srivastava, 1993; Hu and Chugunova, 2008;
Mariethoz and Kelly, 2011), object-based methods (Haldorsen
and Chang, 1986) or complex forms of indicator simulation such
as the pluriGaussian method (Le Loc’h et al., 1994; Mariethoz et al.,
2008). Although these methods are appropriate for 3D gridded
facies models, they are not always applicable to modeling
geological surfaces, which are continuous and strongly non-
stationary.

The literature on spatial interpolation of topographic datasets in
meandering, non-stationary valley-shaped landscapes presents a
series of solutions and customizations to improve the performance
of simple interpolators when applied to such data (Nordfjord et al.,
2005). One successful approach has been to transform the datasets
to a channel-oriented coordinate system prior to interpolation
(Legleiter and Kyriakidis, 2008; Merwade, 2009; Merwade et al.,
2006, 2005). This coordinate conversion, however, is more appro-
priate for dense datasets and requires accurate definition of the
channel centerline, often a time-intensive task (Goff and Nordfjord,

2004). Unfortunately, in hydrogeology the data is frequently too
sparse for this method to be successful. Another general principle
often used to improve topographic reconstructions is the concept
of separating trend from the data using empirical functions. This
idea has been the focus of recent studies related to river bathym-
etry modeling (Legleiter and Kyriakidis, 2008; Merwade, 2009),
allowing subsequent application of isotropic interpolation. These
methods still present challenges, particularly in addressing non-
stationarity (Merwade, 2009) and their suitability to site-specific
data. Even though some studies derive generic trend functions
using modern analogs (Allan James, 1996), their applicability to
different settings should be dealt with caution. For instance, the
morphological differences between fluvial and glacial environ-
ments may invalidate the applicability of a method derived for a
specific environment (Anderson et al., 2006; Graf, 1970; Li et al.,
2001). Therefore, a general methodology is needed to fully
extract trends from available data, avoiding loss of information
typically occurring during curve-fitting procedures. Also relevant
to this work, is the use of random fields through Sequential
Gaussian Simulation (SGS). Gringarten et al. (2005) use this
approach to simultaneously confer realistic geological features to
topographic models, while conditioning to well-log data. As a by-
product of this workflow, several possible realizations are ob-
tained which can be used to convey quantitative measures of
uncertainty.

In recent years, many authors have demonstrated that aquifer
conceptualization is responsible for a significant proportion of the
uncertainty in groundwater model predictions (Bond et al., 2007;
Bredehoeft, 2005; Neuman, 2004; Poeter, 2007; Rojas et al., 2010;
Zeng et al., 2013). To date however, the specific problem of gener-
ating 3D reconstructions of paleovalley geomorphologywith sparse
data has received little attention. The goal of this paper is to model
uncertainty related to the alluvium/bedrock interface caused by
limited subsurface information, which is often an important source
of predictive uncertainty (Poeter, 2007; Refsgaard et al., 2012). In
this regard, multi-realization methodologies have a proven track-
record in the quantification of uncertainty due to data limitation
and other factors (Refsgaard et al., 2012; Troldborg et al., 2007). This
last point highlights the need for specialized geostatistical algo-
rithms capable of generating multiple realizations of alluviume

bedrock interfaces.
In this paper, we address the challenge of integrating, in an

automated workflow, the various pieces of information available
for the characterization of alluvial-aquifer bedrock surfaces using a
stochastic multi-realization approach. We adopt a hybrid modeling
framework (Bertoncello et al., 2013; Dubrule, 1993; Michael et al.,
2010), which combines different approaches and data types to
tailor the modeling workflow to a specific geologic environment.
Fig. 1 illustrates the general problem of a bedrock surface overlain
by valley-filling unconsolidated sediments, along with the different
types of data typically available for a geological modeling. The data
sources considered here are:

1. Lithological data from boreholes that intersect the bedrock, as
well as those that do not intersect it but provide an estimate of
the upper bound of the alluviumebedrock interface,

2. Geophysical surveys providing cross-sections of the bedrock
surface,

3. Digital elevation models (DEMs), and
4. Conceptualization of bedrock geometry as elongated, contin-

uous and V-shaped, typical of fluvial valleys.

Each data source brings information of a different nature.
Lithological well-logs inform the depth to bedrock quite accu-
rately; however they are typically not numerous enough to
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