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a b s t r a c t

An integrated methodology is proposed for the effective prediction of biodiversity exclusively from
abiotic parameters. Phytoplankton biodiversity was expressed as richness, evenness and dominance
indices and abiotic parameters included temperature, salinity, dissolved inorganic nitrogen and phos-
phates. Prediction was based on three machine learning techniques: model trees, multilayer perceptron
and instance based learning. To optimize diversity prediction, indices were calculated on a large number
of phytoplankton field assemblages, but also on corresponding noise-free simulated assemblages.
Biodiversity was most accurately predicted by the instance based learning algorithm and the efficiency
was doubled with simulated assemblages. Based on the optimal algorithm, indices, and dataset, a soft-
ware package was developed for phytoplankton diversity prediction for Eastern Mediterranean waters.
The proposed methodology can be adapted to any group of organisms in marine and terrestrial eco-
systems whereas important applications are the integration of community structure in ecological models
and in assessments of global change scenarios.

� 2013 Elsevier Ltd. All rights reserved.

Software availability

Name of software: PREPHYB
Developers: Androniki Tamvakis and Vasilis Trygonis
Contact address: Department of Marine Sciences, University of the

Aegean, University Hill, 81100 Mytilene, Greece
Tel.: þ30 22510 36811
Fax.: þ30 22510 36809
E-mail: atamvaki@mar.aegean.gr
First available: 2013
Software required: (a) for MATLAB users: MS Windows or Mac or

Linux; (b) for non-MATLAB users: MS Windows
Programming language: MATLAB R2010a
Program size: (a) for MATLAB users: zipped file of 0.5 MB; (b) for

non-MATLAB users: zipped file of 160 MB
Availability and online documentation: http://www.mar.aegean.gr/

biodiv/Prephyb
Cost: freely available

1. Introduction

Diversity prediction through a number of biotic and abiotic
parameters is currently a challenging issue in ecology (Ingram and
Steel, 2010; Gontier et al., 2006). Obtaining a measure of diversity
from field data is not always feasible due to constraints related to
the taxonomic analysis of samples (Maurer, 2000). However, esti-
mates of diversity are essential when it comes to prioritizing sites
for management purposes (Lockwood et al., 2012), for assessing the
ecological status of ecosystems (WFD, 2000; Spatharis and Tsirtsis,
2010) or for predicting effects of global change on ecosystem di-
versity and function (Dawson et al., 2011). In this context, it is
essential to develop methodologies that provide a realistic pre-
diction of diversity based on a small number of abiotic parameters
that are more straightforward to measure.

Recently, the emergence of powerful tools as the Machine
Learning (ML) techniques and their application in ecology has
significantly advanced the predictive power of models (Fielding,
1999; Kuo et al., 2007; Li et al., 2011). These techniques are effec-
tive for exploring complexecological processes, and canhandlenon-
linearity without relying on implicit assumptions on the relation-
ships betweenparameters (Dzeroski and Drumm, 2003; Jeong et al.,
2008; Junker et al., 2012; Kanevski et al., 2004). However, few at-
tempts have been made so far to apply ML techniques for biodiver-
sity prediction. Most studies are still based on classical statistical

Abbreviations: CV, cross validation; IBk, instance based learning algorithm;
LOOCV, leave one out cross validation; ML, machine learning; MAD, mean absolute
deviation; MTs, model trees; MLP, multilayer perceptron; MLR, multiple linear
regression; NN, neural network; PO4, phosphates; RMSE, root mean square error; S,
salinity; T, temperature.
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approaches such as regression analysis (Arias-Gonzalez et al., 2012;
Brakstad et al.,1994;Denisenko, 2010; Thrush et al., 2001)which are
constrained by assumptions on data such as normality, homosce-
dasticity or colinearity. In this context, application ofML approaches
seems most prominent in marine ecosystems that are affected by
multidimensional, complex and stochastic phenomena often char-
acterized by non-linearity (Olden et al., 2008).

Among the most frequently applied ML algorithms are Model
Trees (MTs), Neural Networks (NNs) and Instance Based learning
(IBk). These algorithms represent the three main ML categories
(trees, neural networks and lazy algorithms) that use completely
different predictive approaches (Solomatine et al., 2008). These
span many applications in ecology (Dzeroski, 2001; Lek and
Guegan, 1999; Recknagel, 2001) whereas in the marine environ-
ment they have been used in hydrodynamics, wave forecasting,
habitat modelling, biomass prediction, and pollution assessment
(e.g. Dakou et al., 2007; Etemad-Shahidi andMahjoobi, 2009; Millie
et al., 2012; Solomatine et al., 2006; Tamvakis et al., 2012; Tian et al.,
2011). Concerning biodiversity prediction in particular, application
of ML techniques in both marine and terrestrial ecosystems has
been based on habitat features, biotic characteristics or a combi-
nation of both with some abiotic parameters (Cheng et al., 2012;
Debeljak et al., 2007; Demsar et al., 2006; Dominguez-Granda
et al., 2011; Dzeroski and Drumm, 2003; Jurc et al., 2006; Knudby
et al., 2010; Kocev et al., 2009; Pittman et al., 2007). These studies
have focused on one biodiversity component (e.g. species richness
or Shannon diversity) whereas so far there has been no attempt to
predict different diversity components (richness, evenness, and
dominance) exclusively from abiotic parameters related to the
physical and chemical environment.

Diversity can be expressed through a number of indices which
quantify community structure and the changes it undergoes due to
natural or anthropogenic stress (Magurran, 2004). However, field
communities are also driven by multiple stochastic factors such as
seasonality and spatial heterogeneity which impose a degree of
uncertainty and distortion on data (Van Straten, 1992). This ‘envi-
ronmental noise’ inherent in field communities is also reflected on
the subsequent calculationof indices (VounatsouandKarydis,1991).
This problem can be overcome with the use of simulated commu-
nities via a species abundance distribution (e.g. the log-series,
lognormal) however retaining the structure of field ones
(Blackwood et al., 2007; Lyashevska and Farnsworth, 2012; Schloss
and Handelsman, 2006; Spatharis and Tsirtsis, 2010). Calculations
on noise-free simulated communities seem appropriate when
trying to establish cause-and-effect relationships, e.g. between di-
versity and abiotic parameters, due to the removal of noise or
distortion thatmoreeasily supports the revealingof possible signals.

In this paper we propose an integrated methodology for the
optimization of diversity prediction exclusively from abiotic pa-
rameters (Fig. 1). The diversity is expressed by diversity, evenness,
and dominance indices calculated on both field and simulated
phytoplankton assemblages covering a wide productivity range
typical of Eastern Mediterranean waters. Predictions were carried
out based on three ML algorithms. The objectives of the study were
thus: (a) to distinguish the ML technique offering themost accurate
prediction, (b) to select the indices representative of all three di-
versity components (richness, evenness, and dominance) (c) to
optimize prediction by calibrating the methodology with indices
calculated on simulated assemblages, and (d) to develop a software
tool for biodiversity prediction based on the proposedmethodology.

2. Methodology

2.1. Datasets

The first dataset employed in the study includes 658 field samples and was
compiled using existing data from coastal areas of the Aegean Sea, E.

Mediterranean representing a wide range of productivity. At each station of a
coastal area, repetitive sampling was carried out covering at least a full annual
cycle on a monthly basis. Detailed information about the sampling sites and data
collection are provided in Spatharis et al. (2008). Inner Saronikos Gulf, near Athens,
and Kalloni Gulf in Lesvos Island are characteristic of eutrophic conditions
(Simboura et al., 2005). Outer Saronikos Gulf and Gera Gulf in Lesvos Island are
more typical of mesotrophic conditions (Arhonditsis et al., 2000; Ignatiades et al.,
1992), while offshore stations in Rhodes Island have been characterized as oligo-
trophic (Kitsiou et al., 2002). A detailed account on the eutrophication level and
ecological status of these areas is provided in Spatharis and Tsirtsis (2010). Among
the various abiotic parameters available in the dataset, a subset was selected for
the aims of the present study, including: (a) concentrations of limiting nutrients,
Dissolved Inorganic Nitrogen (DIN) and Phosphates (PO4), that directly influence
the growth and composition of phytoplankton in the areas under consideration
(Spatharis et al., 2008) and (b) Salinity (S) and Temperature (T), which may also
indirectly affect phytoplankton synthesis through stratification in coastal waters
(Spyropoulou et al., 2013). Nutrient concentrations were measured spectrophoto-
metrically according to Parsons et al. (1984), whereas physical variables were
recorded in situ. Moreover, phytoplankton species-abundance data were used in
the current study analysed following the same protocol according to the inverted
microscope method of Utermöhl (1958). Dataset information and summary sta-
tistics of the above parameters in each of the four areas are provided in Table 1. The
dataset covers a wide range of phytoplankton abundance (103e9 � 106 cells/L) and
species richness (4e39 species). There were no missing values in the dataset and
no special treatment was performed for outlying values. It was considered that the
latter often correspond to extreme events such as algal blooms due to episodic
terrestrial inputs (Spatharis et al., 2007) or to the photoperiod increase during
spring, that have to be included in the models to be developed. The variables’
positive skewness (Table 1), that is almost always observed for environmental data,
was taken into account in the application of the ML algorithms. According to the
requirements of each algorithm standardization or normalization procedures were
applied, described in detail below.

The second dataset includes 658 simulated phytoplankton assemblages with
abundances corresponding exactly to the abundances of the 658 field samples.
The simulation was based on the log-series statistical distribution which assumes
that most species in an assemblage are rare (Fisher et al., 1943). The log-series
distribution is shaped by parameters x and a, that can be calculated knowing
the ratio of species richness to total abundance (S/N) in an assemblage. The S/N
ratio was estimated via a simple linear regression equation between S and N
using the 658 field samples as described in Spatharis and Tsirtsis (2010).
Regression analysis was also used to identify the relation of the abundance of the
most dominant species N1 with the total phytoplankton abundance N in the 658
field samples. When parameters x and a were estimated, the expected number of
species S was allocated for each abundance (total cells N). By feeding the pre-
vious two relationships which characterize field phytoplankton assemblages
onto the log-series distribution, simulated assemblages are generated that retain
the structure of the initial field ones (Fig. 2). This approach has been described in
detail in previous studies (Spatharis and Tsirtsis, 2010; Tsirtsis et al., 2008)
resulting in a wide range of assemblage diversity closely matching reality
(Spatharis et al., 2011).

2.2. Indices expressing diversity components

Indices can express different aspects of biological diversity such as richness,
evenness, and dominance. Thus, diversity indices weigh more on the richness
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Fig. 1. Conceptual diagram of the methodological procedure followed in order to
optimize diversity prediction from abiotic parameters.
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