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a b s t r a c t

We present a Bayesian method that simultaneously identifies the model structure and calibrates the
parameters of a cellular automaton (CA). The method entails sequential assimilation of observations,
using a particle filter. It employs prior knowledge of experts to define which processes might be
important in the system, and uses empirical information from observations to identify which ones really
are and how these processes should be parameterized. In a case study for the São Paulo state in Brazil, we
identify a land use change CA simulating sugarcane cropland expansion from 2003 to 2016. Eight annual
observation maps of sugar cane cultivation are used, split over space and time for calibration and vali-
dation. It is shown that the identified CA can properly reproduce the observations, and has a minimum
reduction factor of 3 in root mean square error compared to a Monte Carlo simulation without particle
filter. In the part of the study area where no observational data are assimilated (validation area), there is
little reduction in model performance compared to the part with observational data. So, incomplete
datasets, regional land survey data, or clouded remote sensing images can still provide useful infor-
mation for this particle filter method, which is an advantage because good quality land use maps are rare.
Another advantage is that in our approach the output uncertainty encompasses errors from expert
knowledge, model structure, parameters and observation (calibration) data. This can, in our opinion, be
very useful for example to determine up to what future period the results are a secure basis for decisions
and policy making.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A Cellular Automaton (CA) represents spatio-temporal change
as local interactions of different entities and processes in a raster
environment (Santé et al., 2010). The fact that a CA consists of
relatively simple rules that can lead to complex patterns, makes it
suitable to study complex system behaviour, which is currently
considered important in environmental systems research (Page,
2011; Manson, 2007; Johnson, 2010; Grimm and Railsback, 2012).
Therefore, cellular automata are applied in many environmental
modelling domains, like fire propagation (Berjak and Hearne,
2002), vegetation spreading (Kéfi et al., 2007), and urban or land
use change modelling (Verburg et al., 2004; Batty, 2005; Lauf et al.,
2012). In CA development, one can distinguish between model
structure identification, i.e. finding the set of processes to be rep-
resented in the model, conceptualized into the set of transition

rules, and model calibration, i.e. finding the correct parameteriza-
tion of these processes. In urban and land use change modelling,
finding the set of transition rules is problematic (Santé et al., 2010;
Straatman et al., 2004), which possibly poses limitations on the
reliability and therefore the usability of these models.

Transition rule derivation can be done in a number of ways. 1)
From fundamental, e.g., physical or chemical, laws (e.g., Collin et al.,
2011). This is difficult in land use change modelling, as most
fundamental laws in this field do not provide a quantitative process
description. Yet, some have successfully applied physical laws to
simulate land use expansion, mainly aimed at cities (Batty, 2012;
Bettencourt, 2013). 2) By experts, who have experience-based
knowledge of the study area. This is widely done in land use
changemodelling (e.g., van der Hilst et al., 2012; Yu et al., 2011), but
it is somewhat subjective. 3) From empirical data. It is recognized
that this is challenging in land use change modelling (Straatman
et al., 2004; Hansen, 2012), but it is still important to continue
exploring this option, because there is a need to find a more
evidence-based approach to set up a land use change model.
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One can combine the benefits of expert knowledge and empir-
ical data by using a method for transition rule derivation in which
the prior knowledge (definition of potential model structures) is
defined by experts, and the posterior knowledge (identification of
the best structure) is attained by empirical data. Our objective is to
devise such a method, which we believe should fulfil two re-
quirements. The first requirement is that themethod should be able
to quantify uncertainty (Rasmussen and Hamilton, 2012; Aerts
et al., 2003), i.e. it should not only be able to select the best
model structure from all potential model structures defined by the
prior knowledge, but it should give the likelihood of each individual
structure being correct. In this way, a stochastic CA is obtained,
which combines all potential model structures and parameters in
an optimal way. The most important advantage of this is that
confidence intervals of the modelled land use projections can be
defined, such that policy makers can decide up to what point in
time the projections are reliable enough to be a foundation for their
policies. The second requirement is that, herein, one should not
only take into account uncertainty in the prior information, but also
in the empirical data, the observations of land use, used to update
the priors (Fang et al., 2006). Ignoring uncertainty in the empirical
data may lead to an underestimation of model output uncertainty.

The combined requirements of prior knowledge, observation
uncertainty, and posterior knowledge with output uncertainty lead
towards Bayesian methods, which start out with prior knowledge,
and then assemble model uncertainty and observation uncertainty
to end up with posterior knowledge including uncertainty infor-
mation. Therefore, we show a method for model structure identi-
fication and calibration using the particle filter, a sequential
Bayesian estimation, or data assimilation, technique (van Leeuwen,
2009). Data assimilation techniques update the prior knowledge
during model runtime at time steps when observations are avail-
able. We will use this property to sequentially update both the
model rules and their parameters. Data assimilation techniques are
increasingly being used to calibrate spatio-temporal models in a
wide range of different fields in the environmental sciences, such as
oceanography (van Leeuwen, 2003), hydrology (Salamon and
Feyen, 2009), and atmospheric transport (Hiemstra et al., 2012),
but have, to our knowledge, not yet been applied for model struc-
ture identification. Recently, their potential has been recognized in
the land use change field (van der Kwast et al., 2011; Zhang et al.,
2011).

The approach that is most often used in land use change
modelling to define the model structure is regression on a land use
map (Verburg et al., 1999, 2002; Aguiar et al., 2007; Diogo et al., in
preparation). This method mostly results in only one deterministic
model structure, without uncertainty in either the observations
used to construct the regression model or in the model itself, and
therefore does not meet our requirements. In the last decade,
model rule identification methods originating from artificial intel-
ligence have become popular, like neural networks (Dai et al., 2005;
Li and Yeh, 2002), and swarm intelligence algorithms (Feng et al.,
2011; Liu et al., 2008). These, however, do not take into account
observation uncertainty, the second requirement. Moreover, they
result in black-box models (Li and Yeh, 2002), i.e. they do not
provide explicit posterior knowledge. Bayesian land use model
structure identification has been performed before by Kocabas and
Dragi�cevi�c (2007). They apply a Bayesian network and an influence
diagram. However, they do not include observation uncertainty.

In this study, we evaluate the performance of the particle filter
method for model structure identification and calibration of a land
use change CA. Furthermore, we assess the effect of the amount of
observational data assimilated, because time series of good quality
land use maps are often absent (Straatman et al., 2004). We also
consider the effect of a pre-set (expert-based) model structure, to

represent the situation of a model structure identification deter-
mined beforehand, which is now common practice in land use
change modelling. In all approaches we provide confidence in-
tervals with the land use projections, useful as a decision criterion
for policy makers.

The assessments are carried out on a case study of the expansion
of sugar cane fields in the São Paulo state in Brazil, using an adapted
form of the PCRaster Land Use Change model (PLUC) (Verstegen
et al., 2012). As the sugar cane is partly used to produce ethanol,
this case study is relevant in view of the current debate on the
sustainability of bioenergy from dedicated crops when land use
change is taken into account (Lapola et al., 2010; Hellmann and
Verburg, 2011). São Paulo is especially interesting because it has a
long history in ethanol production (Walter et al., 2011) and very
good observational data availability (Rudorff et al., 2010).

The next section provides a definition of the problem of tran-
sition rule identification in a CA, a brief explanation of data
assimilation, a description of the case study, an outline of the prior
information about the land use change model structure and pa-
rameters, details of the performance measures used, a description
of the observational data, and a scenario sketch. This is followed by
a combined results and discussion section, and a conclusion
section.

2. Methods

2.1. Model structure and parameter identification in a land use change cellular
automaton

A cellular automaton (CA) consists of a set of transition rules representing the
processes that lead to change in the system state over time and rules to combine
these transition rules (Fig. 1). In the case of a land use change CA a transition rule is a
function calculating the suitability of each location (cell) for a particular land use
type, with respect to a spatial attribute that influences the allocation of that land use
type, for instance the slope or the distance to roads. So, a land use change CA con-
tains for each land use type a set of transition rules. The transition rules contain
parameters defining the characteristics of the process represented by the transition
rule, for example an exponent in an exponential relationship between the suitability
value and slope. The transition rules need to be selected and combined such that
they represent the key processes that steer the spatial allocation of land use change.
This can be accomplished by selecting from a set of candidate transition rules. This
could be done either in a Boolean fashion, by switching transition rules on or off, or
in a continuous fashion, by weighting each transition rule. We refer to this selection
of transition rules as model structure identification.

In modelling, it is essential to find the model structure and parameter values
that result in an optimal model representation of the studied land use system.
Identification of the model structure and parameter values can be accomplished
through comparison of the modelled system, with certain transition rules and

Fig. 1. Conceptual model of a general CA: represents the processes of change in the
system state over time, i.e. the set of transition rules and the way to combine them, xt
represents all inputs, usually spatial attributes, and contains the parameters. Model
calibration refers to identifying pt, model structure identification refers to selecting the
transition rules. Identification of the parameters and model structure is based on a
comparison between the land use map zt, or a derived spatial metric, with the
observed land use map ot, or a derived spatial metric. The parameter values and model
structure with the smallest difference between zt and ot are considered optimal.
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