
Automatica 48 (2012) 514–520

Contents lists available at SciVerse ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Consistency of subspace methods for signals with almost-periodic components✩

Martina Favaro a, Giorgio Picci b,1
a Department of Electronics for Automation, University of Brescia, Italy
b Department of Information Engineering, University of Padova, Italy

a r t i c l e i n f o

Article history:
Received 29 June 2010
Received in revised form
11 May 2011
Accepted 7 August 2011
Available online 28 January 2012

Keywords:
Subspace identification
Frequency estimation
Statistical consistency
Almost periodic signals
Purely deterministic processes

a b s t r a c t

It is sometimes claimed in the literature that subspace methods provide consistent estimates, also when
the underlying observed signal has purely oscillatorymodes (or the generating system has uncontrollable
eigenvalues on the unit circle) but a formal proof of this assertion does not seem to exist. In this
paper, we prove consistency of subspacemethods with purely oscillatory modes. A well-known subspace
identification procedure based on canonical correlation analysis and approximate partial realization is
shown to be consistent under certain conditions on the purely deterministic part of the generating system.
The algorithm uses a fixed finite regression horizon and the proof of consistency does not require that the
regression horizon goes to infinity at a certain rate with the sample size N .

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with subspace identification of stationary
processes with oscillatory components. At a first sight this
problem may look like a minor generalization of a standard
identification problem which has been exhaustively treated in
the literature since the early 1990s. In reality, on one hand the
problem encompasses harmonic retrieval; that is, estimation of
the harmonic components of a stationary signal in additive noise,
a problem of paramount importance in signal processing which,
in the multichannel case, cannot be approached by the standard
methods like Pisarenko, MUSIC, ESPRIT etc. It seems fair to say that
the specialized literature onharmonic retrieval in the case of vector
signals, when the additive noise is colored, is still far from offering
satisfactory solutions. For this class of signals, on the other hand,
subspace system identification appears as a natural choice.

However it is well-known that stationary random processes
with periodic components are not ergodic. Non-ergodicity means
in particular that the limit when the sample size goes to infinity of
the process sample covariance is sample dependent. In particular,
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the limit sample covariance depends on the random amplitudes
of its elementary oscillatory components; see, e.g. Söderström and
Stoica (1989, pp. 105–109). On the other hand, the asymptotic
statistical properties of subspace methods (and, more generally,
of correlation-based methods) depend essentially on the limit
sample covariances, which in the presence of oscillatory or quasi-
periodic components are not equal to the ensemble averages;
i.e., do not coincide with the true covariances. Since parameter
estimation procedures based on correlation methods require
solving linear relations involving estimated sample covariances, a
natural question to ask is if the parameter estimates obtained by
solving these linear equations are consistent. This is generally true
for signalswhich are second-order ergodic but sample dependence
casts doubts on the validity of standard asymptotic statistical
properties, like consistency, of subspace methods in this setting.
In particular legitimate doubts arise on the validity of the standard
proofs of consistency of subspace methods for signals of this type.

Sections 4 and 5 deal with the question of asymptotically
recovering the system parameters (modulo similarity) starting
from finite data by a standard subspace algorithm, formulated as
an approximate partial realization problem. This setting permits to
prove almost sure consistency of the algorithm without having to
estimate the transient estimation errors inherent in the truncated
least-squares regression approach of Peternell (1995), Peternell,
Deistler, and Scherrer (1995); Peternell, Scherrer, and Deistler
(1996).

Consistency of subspace methods for purely non-deterministic
signals (time series) has been proved earlier in the just cited
references. However, to the best of the authors’ knowledge, a proof
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of consistency when there are quasi-periodic components due
to uncontrollable eigenvalues on the unit circle, does not exist.
The only paper which comes close in spirit to what concerns us
here is Bissacco, Chiuso, and Soatto (2007). In this paper however
consistency analysis had to be left out as being ‘‘beyond the
scope of the paper’’. Finally, note that processes described by
systems whose eigenvalues of modulus one are reachable for the
driving process noise, do not concern us here as these processes
are actually non-stationary and do not contain almost-periodic
oscillations.

2. Stationary processes with an almost-periodic component

All random variables/vectors, denoted by lowercase boldface
characters, will have zero mean and finite second order moments.
The symbol E denotes mathematical expectation. All random
processes will be discrete time. It is a well-known fact that
every vector-valued, say m-dimensional, second-order stationary
process admits an orthogonal decomposition

y(t) = yd(t) + ys(t), t ∈ Z (2.1)

where yd and ys are the purely deterministic (p.d.) and the purely
non-deterministic (p.n.d.) components, the latterwith an absolutely
continuous spectrum and a log-integrable spectral density; see e.g.
Rozanov (1967). If y admits finite-dimensional realizations it can
be described by a minimal state space model of the form,
x(t + 1)
z(t + 1)


=


Ad 0
0 As

 
x(t)
z(t)


+


0
K


e(t) (2.2a)

y(t) =

Cd Cs

 x(t)
z(t)


+ e(t) (2.2b)

where the undriven subsystem with p.d. output yd(t) := Cdx(t),
described by an observable pair (Ad, Cd) has a positive definite
initial state covariance matrix Pd = E x(0)x(0)⊤. The minimal
triplet (Cs, As, K) describing the p.n.d. component ys(t) = Csz(t)+
e(t) originates a stableminimumphase transfer function I+Cs(zI−
As)

−1K . Here ewill be taken to be the innovation process of ys (and
hence of y as well), having a positive definite covariance matrix
∆ := E e(t)e(t)⊤ which we shall write in factorized form as ∆ =

DD⊤ with a nonsingular factor D. In the following we shall need
a.s. convergence of the sample second order moments of the p.n.d.
output component. To ensure this (second order ergodicity) we
may assume that e is a stationary martingale difference with finite
fourth ordermoments. SeeHannan andDeistler (1988) or Peternell
et al. (1995, Section 3).

By stationarity and minimality the two block-vector compo-
nents of the initial state [ x(0)⊤ z(0)⊤ ]

⊤ of (2.2) must be uncor-
related. Each has a positive definite covariance matrix, satisfying
the Lyapunov equations

Pd = APdA⊤, Ps = AsPsA⊤

s + KK⊤. (2.3)

We shall denote by d the dimension of the p.d. subsystem and by p
the dimension of the p.n.d. subsystem in (2.2) and let n := d + p.
Occasionally we shall use the more compact notations

C =

Cd Cs


, P := diag {Pd, Ps},

A := diag {Ad, As}.
(2.4)

A special class of signals (2.1) is obtained when the p.n.d. compo-
nent is white noise; i.e. y(t) = yd(t) + e(t). Due to their impor-
tance in diverse applications, especially frequency estimation, a
huge literature has been devoted to the identification of these sig-
nals; see e.g. the book (Stoica & Moses, 2005) and the references
therein.

Since yd and ys are completely uncorrelated, the covariance
function of the output process y splits into its p.d and p.n.d.
components

Λ(τ ) := Ey(t + τ)y(t)⊤ = Λd(τ ) + Λs(τ )

with the p.n.d. part having the well-known representation, see e.g.
Anderson (1969),

Λs(τ ) = CsAτ−1
s C̄⊤

s for τ = 1, 2, . . .
Λs(0) = CsPsC⊤

s + DD⊤ for τ = 0
(2.5)

where C̄⊤
s = AsPsC⊤

s + KD⊤. The structure of Λd will emerge from
the analysis which follows.

We can choose an orthonormal basis in which Pd = I , and Ad
is an orthogonal (and hence diagonalizable) matrix with complex
eigenvalues e±iθk , k = 1, . . . , ν and possibly real eigenvalues at
θ0 = 0 and θν+1 = π . Hence Ad is similar to a block-diagonal real
matrix

Ad = diag


In0 ,


cos θ1In1 − sin θ1In1
sin θ1In1 cos θ1In1


,

· · ·


cos θν Inν − sin θν Inν

sin θν Inν cos θν Inν


, −Inν+1


θk ≠ θj (2.6)

where n1, . . . , nν are themultiplicities of the complex eigenvalues
eiθk appearing in conjugate pairs and n0 and nν+1 are the
multiplicities of the real eigenvalues λ = 1 and λ = −1, some
or both of which may possibly be absent. Observability implies
that the output dimension m must be an upper bound for the
multiplicity of the eigenvalues. Hence for a scalar process n0 and
nν+1 are≤ 1 and there are just ν elementary 2×2 oscillatory blocks
each corresponding to one of the ν distinct angular frequencies
θk, k = 1, . . . , ν, which are strictly between θ = 0 and θ = π .

The m × d (where d = 2


nk + n0 + nν+1) matrix Cd splits
into blocks


C0 C1 · · · Cν Cν+1


where C0 and Cν+1 arem ×

n0 and m × nν+1 and the Ck, = 1, 2, . . . , ν are m × 2nk. The
diagonal block elements in Ad are denoted by Ak. Starting from
the complex representation where the matrix Ad is diagonal, each
corresponding matrix Ck is (complex and) of full row rank. Thus
there exists a collection of rows such that the corresponding
submatrix is nonsingular. Using this matrix to transform the basis
one can achieve a unity matrix in these rows. Converting back to
real matrices then achieves the specific form

Ck = Πk


Ink 0
Hk,1 Hk,2


, k = 1, . . . , ν

where Πk is a permutation matrix and the row-block [Hk,1 Hk,2] is
(m − nk) × 2nk. In the scalar case ck = [ 1, 0 ] for k = 1, 2, . . . , ν
and 1 otherwise. Returning to the (complex) basis in which Ad
is diagonal, it is easy to see that stationarity implies that all the
nk-dimensional complex state subvectors zk(t) := x1,k(t)+ix̄2,k(t)
and z̄k(t) := x1,k(t) − ix̄2,k(t), k = 1, 2, . . . , ν and the random
vectors xk(t), k = 1, ν + 1 must be mutually uncorrelated. This
implies in particular that

E {zk(0) z̄k(0)⊤} = E {x1,k(0)x1,k(0)⊤} − E {x2,k(0)x2,k(0)⊤}

+ i

E {x1,k(0)x2,k(0)⊤}

+ E {x2,k(0)x1,k(0)⊤}


= 0

so that the covariance ofxk(0) =

x1,k(0)⊤ x2,k(0)⊤

⊤ must have
the following structure

Pk = E xk(0)xk(0)⊤ =


Σk Mk

M⊤

k Σk


Mk = −M⊤

k
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