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a b s t r a c t

A modified version of the dynamically dimensioned search (MDDS) is introduced for automatic cali-
bration of watershed simulation models. The distinguishing feature of the MDDS is that the algorithm
makes full use of sensitivity information in the optimization procedure. The Latin hypercube one-factor-
at-a-time (LH-OAT) technique is used to calculate the sensitivity information of every parameter in the
model. The performance of the MDDS is compared to that of the dynamically dimensioned search (DDS),
the DDS identifying only the most sensitive parameters, and the shuffled complex evolution (SCE)
method, respectively, for calibration of the easy distributed hydrological model (EasyDHM). The com-
parisons range from 500 to 5000 model evaluations per optimization trial. The results show the
following: the MDDS algorithm outperforms the DDS algorithm, the DDS algorithm identifying the most
sensitive parameters, and the SCE algorithmwithin a specified maximum number of function evaluations
(fewer than 5000); the MDDS algorithm shows robustness compared with the DDS algorithm when the
maximum number of model evaluations is less than 2500; the advantages of the MDDS algorithm are
more obvious for a high-dimensional distributed hydrological model, such as the EasyDHM model; and
the optimization results from the MDDS algorithm are not very sensitive to either the variance (between
0.3 and 1) for randn0 used in the MDDS algorithm or the number of strata used in the Latin hypercube
(LH) sampling.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hydrological models are an effective tool for hydrological cycle
simulations of watershed runoff and flow routing processes to
predict the magnitude of streamflows generated by a precipitation
event. Conceptual hydrological models, traditionally based on a
mathematical formulation of physical processes, often involve a
large set of parameters (Saltelli et al., 2006). The accuracy of these
predictions depends on how well the model structure is defined
and how the model parameters are determined (Duan et al., 1994).
More sophisticated and physically based distributed hydrological
models (DHMs) with multiple parameters, such as EasyDHM (Lei
et al., 2011), are designed to better represent realistic situations.
Simulations with DHMs make better use of distributed driving

forces and distributed basin parameters to display the different
processes of the hydrological cycle, such as surface runoff,
groundwater flow, sediment transport, solute transport, and other
related processes.

As multiple physically based hydrological processes are
considered in DHMs, these are characterized with high-
dimensional parameter spaces. Estimation of all of the model pa-
rameters is very time-consuming even impossible (Hornberger and
Spear, 1981). As many of these model parameters are not directly
measurable, a model calibration is needed. Computer technology
enables automatic calibration as a substitute formanual calibration,
thus reducing the labor-intensive processing that is not only
tedious but also strongly dependent on experience.

Many popular options, such as the DDS and SCE, have been
introduced for hydrological model calibration. The SCE algorithm is
a global optimization that was initially designed to solve the
problems of conceptual watershed model calibration. In the past
decade, numerous studies have shown that the SCE algorithm is
effective and efficient (Duan et al., 1992, 1993, 1994). However, the
SCE algorithm imposes high computational requirements,
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especially for DHMs. The DDS algorithm, which performs well with
fewer iterations (less than 10,000), was introduced by Tolson and
Shoemaker (2007) for calibration of watershed models. They re-
ported that the DDS is more efficient and effective than SCE within
the same computational budget in the context of automatic cali-
bration of the Soil and Water Assessment Tool 2000 (SWAT2000).
The DDS algorithmwas then modified to produce a hybrid discrete
dynamically dimensioned search (HD-DDS) (Tolson et al., 2009) to
solve design problems for discrete single-objective constrained
water distribution systems and for DDS approximation of uncer-
tainty (Tolson and Shoemaker, 2008) (DDS-AU), which quantifies
prediction uncertainty using prediction bounds rather than pre-
diction limits in order to find behavioral parameter sets efficiently.

However, for most optimization algorithms, including those
mentioned above, the model parameters are optimized directly
without considering parameter sensitivity, which leads directly to
the problem of dimensionality and over-parameterization when
these algorithms are applied to models with many parameters.

In recent years, some attempts have been made to address the
issue of over-parameterization. Van Griensven (2005) performed a
sensitivity analysis to assess the relative importance of individual
parameters prior to parameter optimization of SWAT. However, the
low-sensitivity parameters (howevermeaningful in DHM) are fixed
prior to the parameter estimation process and the calibration is
carried out for the most influential parameters. This study focuses
on how to make better use of parameter sensitivity in optimization
for DHM calibration by introducing a modified dynamically
dimensioned search algorithm, termed MDDS. The performance of
the MDDS was compared to that of the DDS, the DDS identifying
only the most sensitive parameters, and SCE, respectively, to verify
the practicability of introducing parameter sensitivity information
into the optimization algorithm.

An initial sensitivity analysis should be conducted to determine
the parameters to which the hydrological model is most sensitive.
Numerous different sensitivity analysis techniques (local or global)
have been developed and applied (Saltelli et al., 2004; Makler-Pick
et al., 2011; Ratto et al., 2012; Plischke, 2012; Castaings et al., 2012),
such as the one-step-at-a-time method (OAT method) (Sun et al.,
2012), LH-OAT method (van Griensven et al., 2006), the Sobol
method (Sobol, 1993; Rosolem et al., 2012), and Monte Carlo
simulation method (MC method) (Cea et al., 2011). The LH-OAT
method is a first-order second-moment (FOSM) method that esti-
mates the mean (first moment) and variance (second moment) of
model output, through computation of the derivatives of model
output, in order to model input at a single point (Yen, 1993; van
Griensven et al., 2006). Its Taylor expansion form can be
expressed as follows:
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where q ¼ fq1;.; qkg denotes the input random variables of
q ¼ fq1;.; qkg andvM=vq are derivatives evaluated at the mean
values q.

Sobol analysis is another widely used variance-based method.
The Taylor expansion can be expressed as follows:
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where q ¼ fq1; q2;.; qkg is the vector of kmodel factors. The Sobol
approach decomposes the function f ðq1; q2;.; qkÞ into terms of

increasing dimensionality so that each successive dimension
represent and increasing degree of interaction among the param-
eters. Moreover, Rosolem et al. (2012) introduced a multi-criteria
implementation of the Sobol method based on the notion of
multiple-criteria ranking. Compared with the LH-OAT method, the
Sobol method considers parametric interactions reflecting the
sensitivity of complex nonlinear models (Yang, 2011; Nossent et al.,
2011). MCmethod consists of a random selection of input scenarios
according to their probabilities of occurrence (Carpani et al., 2012).
The major disadvantage of the Sobol method and Monte Carlo
simulation method, especially in this study, is the high computa-
tional demand. The goal of this study is to make good use of
parameter sensitivity during the calibration period without much
increase in computational burden. Another advantage of combining
sensitivity analysis with automatic optimization methods is that
there are relativelymature theories for both sensitivity analysis and
automatic optimization algorithms, which have been accepted as
reliable and are seldom questioned. In this study, the LH-OAT
method was introduced for its ability to handle the nonlinear,
nonadditive, and nonmonotonic problems of complex hydrological
models (Saltelli et al., 2009).

The rest of this paper is organized as follows: Section 2.1 gives a
brief introduction to the SCE algorithm. Section 2.2 describes the
original DDS algorithm. Section 2.3 describes the sensitivity anal-
ysis technique, LH-OAT. Section 2.4 gives a detailed explanation of
the modified parts of the algorithm. Section 2.5 introduces a
distributed hydrological model, EasyDHM, used as the optimization
problem. Sections 2.6 and 2.7 are on the objective function and the
study area, respectively. Section 3 presents the results and discus-
sion. Section 4 provides the conclusions and discusses future
research directions.

2. Methodology

This paper aims to take advantage of combining sensitivity
analysis with the DDS algorithm and to obtain improved solutions.
The performance of the DDS algorithm modified by introducing
sensitivity information was compared to that of the original DDS
algorithm. Moreover, another benchmark optimization algorithm,
the SCE algorithm, was utilized. The method of fixing the insensi-
tive parameters and only calibrating the most sensitive parameters
has been widely used by hydrological modelers. A performance
comparison was made between the MDDS and the DDS identifying
only the 15 most sensitive parameters. The techniques used are
given in the following sections.

2.1. The shuffled complex evolution method

The SCE method is based on a synthesis of four concepts that
have proved successful for global optimization: a) combination of
probabilistic and deterministic approaches, b) clustering, c) sys-
tematic evolution of a complex of points spanning the space in the
direction of global improvement, and d) competitive evolution. A
detailed description of the SCE algorithm can be found in Duan
et al., (1993).

The SCE algorithm used was coded in Fortran and some neces-
sary modifications were made. The random number generation
methods differed between the SCE and DDS algorithms. The
random numbers used in the SCE algorithmwere generated by the
built-in function of Intel Fortran so as to use the same generation
method with both the DDS and MDDS algorithms and purely
compare the evaluation strategies of these algorithms. The random
seed used in the three algorithms was the same. In addition, a
parameter convergence judgment is not used in the SCE algorithm,
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