
Vectorized simulation of groundwater flow and streamline transport

George Kourakos, Thomas Harter*

Dept. of Land Air and Water Resources, University of California Davis, Davis, 95616 CA, USA

a r t i c l e i n f o

Article history:
Received 11 April 2013
Received in revised form
21 October 2013
Accepted 26 October 2013
Available online 27 November 2013

Keywords:
Non-point source pollution
Finite element method
Matlab
Streamline transport
Groundwater modeling

a b s t r a c t

We describe a modeling suite of Matlab functions for simulating nonpoint source (NPS) pollution in
groundwater aquifers. The NPS model simulates groundwater flow and contaminant transport from a
large array (order of 102 e 107) of spatially distributed sources with time-varying pollution strength to a
similarly large array of spatially distributed production wells (receptors) using the streamline transport
approach. The code solves three equations: steady-state groundwater flow, particle tracking, and tran-
sient advection dispersion contaminant transport. The code performs convolution integration in its
predictive step. Written in highly efficient vectorized form to avoid time consuming “for/while” loops,
the code is also suitable for other groundwater flow and transport problems. The code is verified against
analytical solutions and finite element software Comsol. An application illustrates 200 years of transient
nitrate transport in the 2000 km2 Tule River aquifer sub-basin of the Central Valley, California, with 9000
individual nitrate sources and 1920 wells.

� 2013 Elsevier Ltd. All rights reserved.

Software availability

Name of Software: mSim
Developers: George Kourakos, Thomas Harter
First available year: 2013
Program Language: Matlab, C/Cþþ
Availability: http://groundwater.ucdavis.edu/mSim/
Primary contacts: George Kourakos, Thomas Harter
E-mail: gkourakos@ucdavis.edu, giorgk@gmail.com, thharter@

ucdavis.edu

1. Introduction

Numerical simulationmodels have been established as standard
methods for studying a vast variety of physical phenomena and
environmental processes including water resources (Moriasi et al.,
2012; Bobba, 2012; Bennett et al., 2013). In many countries, water
management decisions are based, to a large extent, on simulation
with numerical models (Refsgaard and Henriksen, 2004). Hence,
numerical models have found broad applicability in research and
education as well as in consulting, decision making, and industry.
Following this trend, groundwater hydrologists also have a long
history of developing and using numerical models for simulating

groundwater flow and contaminant transport i.e. Modflow
(Harbaugh et al., 2000), Parflow (Ashby and Falgout, 1996),
HydroGeoSphere (Therrien et al., 2007), Feflow (Trefry andMuffels,
2007), SUTRA (Voss, 1984), HYDRUS (�Simunek et al., 2012), IWFM
(Integrated Water Flow Model, 2012), FEMWATER (Lin et al., 1997)
etc.

In general, numerical models can be divided into two broad
categories: Open source, where the code is available to the user
under certain license types (e.g. Modflow, IWFM, FEMWATER) and
closed source (e.g. HydroGeoSphere, Feflow, Comsol (COMSOL,
2008)) where the user has no access to the original code. Typically,
closed source softwareproducts are commercial products supported
through license sales (Feflow, Comsol). Neither type is necessarily
preferable. The choice depends onuser experience andneeds andon
budget constraints. Closed sourcemodels, especially those available
commercially, are typically accompanied by user-friendly graphical
user interfaces, which attempt to assist and protect the user from
dealingwithmany of the details involved in a numerical simulation,
i.e. grid generation, assembly process, preconditioners, solvers,
parallel implementation, etc.While this is desirable inmany cases, it
is also very important, especially in research, that users have access
and be able to deepen and intervene with the numerical codes. In
addition, open source codes allow widespread reproduction of re-
sults,which is fundamental to science anduseful to awider audience
than closed source codes. Hence, open source codes are more
common in education and research, while commercial products are
more popular in consulting and industry. Open source codes, while
transparent to the user, are not always user friendly. For example,

* Corresponding author.
E-mail addresses: gkourakos@ucdavis.edu, giorgk@gmail.com (G. Kourakos),

thharter@ucdavis.edu (T. Harter).

Contents lists available at ScienceDirect

Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft

1364-8152/$ e see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.envsoft.2013.10.029

Environmental Modelling & Software 52 (2014) 207e221

Delta:1_given name
Delta:1_surname
http://groundwater.ucdavis.edu/mSim/
mailto:gkourakos@ucdavis.edu
mailto:giorgk@gmail.com
mailto:thharter@ucdavis.edu
mailto:thharter@ucdavis.edu
mailto:gkourakos@ucdavis.edu
mailto:giorgk@gmail.com
mailto:thharter@ucdavis.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2013.10.029&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2013.10.029
http://dx.doi.org/10.1016/j.envsoft.2013.10.029
http://dx.doi.org/10.1016/j.envsoft.2013.10.029


open source codes such as MODFLOW and FEMWATER, which
simulate thegroundwaterflowequationand saturated/unsaturated,
density driven, flow and transport respectively, require a tedious
input data preparation process, even for relatively simple applica-
tions. For the aforementioned codes, pre- and post-processors have
been developed that assist in the data input and output processing,
e.g. GroundwaterVista�, Visual Modflow�, GMS�, ModelMuse
(Winston, 2009), etc.

The majority of open source codes is written in FORTRAN
(Modflow, IWFM, Hydrogeosphere, SUTRA, FEMWATER) or C/Cþþ
(Comsol, OpenFoam (OpenFoam, 2013), Dune (Dedner et al., 2011)),
which provide strong computational efficiency. However reading
and understanding languages such as FORTRAN and C/Cþþ re-
quires significant experience and knowledge of the programming
language itself. Implementing and testing research ideas that
require modifications to an existing code are potentially difficult
and error prone tasks. In addition, most recent codes are likely to
use an object oriented programming style e.g. Cþþ, which is
convenient for the experienced developer, yet adds another level of
difficulty to users that are not programmers.

In addition to products based on high performance languages
such as Fortran and C/Cþþ, there is a number of high-level scripting
languages that promise to increase productivity without compro-
mising performance on high performance computing systems
(Chaves et al., 2006) such as Python, Matlab, Octave etc. In addition
these languages are thought to have less steep learning curveswhen
compared to Fortran or C/Cþþ. In particular, Matlab is a proprietary
platformthat is verypopular amongengineeringandenvironmental
sciences students. It provides an interactive environment for nu-
merical computation, visualization, and programming, yet the code
is visible to the user and available for further modifications. Octave
on the other hand is an open source programming language under
the GNU license, which is quite similar to Matlab, so that most
programsare easily portable toMatlab. ButOctave currently lacks an
interactive and user friendly debugging environment.

Matlab and Octave codes are not considered as efficient as codes
written in compiled programming languages, yet there is a growing
number of examples where Matlab is used to carry out computa-
tionally intensive tasks, such as mesh generation (Persson and
Strang, 2004; Talischi et al., 2012), model emulation (Tych and
Young, 2012), remote sensing (Teza et al., 2012), numerical simu-
lations (Lee et al., 2004; Kattan, 2008; Louwyck et al., 2012; Lie
et al., 2012; Kumar and Dodagoudar, 2010), optimization
(Kourakos and Mantoglou, 2008; Kourakos and Mantoglou, 2012a),
neural networks (Kourakos and Mantoglou, 2012b), parallel
computing (Kepner, 2009) etc. The major drawback of Matlab and
Octave is that the execution of repeated tasks in the form of for and
while loop becomes very time consuming when compared to
compiled languages. To alleviate this shortcoming, Matlab and
Octave provide a “vectorized” formulation of loops. According to
Matlab’s definition, vectorization is the conversion of “for” and
“while” loops to equivalent vector or matrix operations which can
be performed in Matlab at a speed comparable to FORTRAN and C/
Cþþ. The efficiency of vectorized implementation for assembling
system matrices that arise from the numerical solution of partial
differential equation has been reported by various studies (Higham,
2002; Koko, 2007; Funken et al., 2011; Andreassen et al., 2011),
while Aslam and Hendren (2012) developed a framework to opti-
mize Matlab code.

In this paper we develop a Matlab program, which we will refer
to as mSim. The code is intended for the simulation of Non-Point
Source (NPS) pollution in groundwater aquifers. The majority of
the Matlab code is portable to Octave without any modification. Yet
there is a small number of preprocessing functions, which are used
to convert the geometrical description of a study area to a

constructive solid geometry object, that arewritten in the new style
of Matlab classes introduced in the 2008a edition, which is
currently not supported by Octave.

Generally, tools applied to non-point source assessment can be
grouped into three categories (NRC, 1993): 1) Index-based methods
which combine spatial properties of the study area such as soil
type, slope, climate, depth to groundwater, etc. and provide
vulnerability maps (Aller et al., 1987); 2) statistical methods such as
regression models (Nolan and Hitt, 2006), neural networks (Al-
Mahallawi et al., 2012), etc. 3) physically based methods attempt
to simulate the fate of contaminants in groundwater by solving the
flow and transport equations. Due to the large extent of NPS
pollution in groundwater basins, full 3D transport simulation is
limited by the available computational resources to simplified cases
(Gallardo et al., 2005; Jiang and Somers, 2009). A promising alter-
native to full 3D transport simulation is the application of
streamline transport methods (Fogg et al., 1999; McMahon et al.,
2008; Starn et al., 2012).

To simulate NPS we utilize the streamline modeling framework
proposed by Kourakos et al. (2012) (NPSAT e NonPoint Source
Assessment Toolbox). The NPSAT consists of three major processes:
i) simulation of steady state groundwater flow, ii) backward particle
tracking, and iii) 1D transient transport simulation along the
streamlines. Note that the governing equations used in the NPSAT
also describe a variety of environmental processes, therefore the
code can be used for simulations other than NPS modeling that are
governed by the same equations.

In our implementation we take advantage of the capabilities of
Matlab and develop a highly vectorized code, minimizing the
number of loops as much as possible. Hence we are able to solve
problems up to several million degrees of freedom, while keeping
the assembly and solution processes on the order of minutes.
Matlab/Octave-provided solvers are only used for the solution of
relatively small sparse systems. For large systems, a variety of
existing solvers can seamlessly be combined with mSim, for
example, pyAMG (Bell et al., 2011), which is a python imple-
mentation of the Algebraic Multigrid solvers, and HYPRE (HYPRE,
2012) and Trilinos (Heroux et al., 2003), which provide rich li-
braries for solving large sparse linear systems of equations on
massively parallel computers.

This paper is divided into six sections. The second section pre-
sents an overview of mSim. The third section briefly describes the
governing equations employed by NPSAT and its finite element
formulation. The fourth section discusses the vectorized imple-
mentation. We then describe a validation of mSim against analyt-
ical and numerical codes and apply mSim to a real case study in
south-central California, USA. The last section summarizes the
key points of this study.

2. Overview of mSim

The mSim code is a collection of Matlab functions that are pri-
marily intended for the simulation of non-point source (NPS)
pollution in agricultural groundwater basins. The modeling
approach, assumptions and justifications are described in detailed
in Kourakos et al. (2012). In this paper we focus on efficient code
development based on the high-level language Matlab/Octave. The
processes that are involved with the NPS pollution modeling are
the simulation of groundwater flow, of particle tracking and of
solute transport along particle streamlines based on the solution of
the advectionedispersion equation.

The Matlab/Octave functions are organized into five groups: i)
mFlow, ii) mPart, iii) mTrans, iv) mUtil and v) mNPSAT, where each
group is actually a directory that contains the required files for the
simulation of flow, the particle tracking, the simulation of transport,

G. Kourakos, T. Harter / Environmental Modelling & Software 52 (2014) 207e221208



Download English Version:

https://daneshyari.com/en/article/6964042

Download Persian Version:

https://daneshyari.com/article/6964042

Daneshyari.com

https://daneshyari.com/en/article/6964042
https://daneshyari.com/article/6964042
https://daneshyari.com

