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The Schur complement domain decomposition method is used for solution of large linear systems. The
algorithm is based on the subdivision of the domain into smaller ones and the solution of those sub-
domains independently. Regarding water distribution systems modeling, the hydraulic simulation
could be formulated as a sequence of systems of linear equations. Therefore, this paper utilizes the
domain decomposition method to accelerate the simulation process further. The method is evaluated
using a large scale real-world system with 63,616 junctions and 64,200 pipes as case study. The case
study shows that the methodology could improve the performance of hydraulic simulation app. by a
factor of 8 without losing accuracy at a suitable level of domain decomposition. Although the optimal
level of decomposition is case specific, considerable speedup might still be achievable by decomposing a

Water distribution systems

large system into only a few subsystems.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Regarding computer modeling of water distribution systems,
very sophisticated methods of hydraulic analysis have been
developed to deal with complex issues related to the design,
operation and management of distribution systems. Nonetheless,
there is still a need to put effort into improving the computational
efficiency and stability of the hydraulic simulation. This is due to
the opportunities given by the development in computer science
and the increasing demand for computing power from more
complicated model-based analyses, such as detailed realistic net-
works modeling, optimization problems, and real-time simulation
(Alonso et al., 2000). For instance, users are becoming increasingly
interested in simulating the time-varying behavior of the WDS. This
new problem requires solving the network (sometimes repeatedly)
at each time step, especially for large scale systems. Hence, this
paper explores the possibility to reduce the computational
complexity of the simulation process by utilizing the Schur com-
plement domain decomposition method. The proposed method
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could be applied to a variety of cutting edge issues in WDS analysis
(Rogers et al., 2007; Izquierdo et al., 2008; Laucelli et al., 2012;
Zhang et al., 2013; Sitzenfrei et al., 2013; Scholten et al., 2013) as
the reduction of the computational load allows for comprehensive
hydraulic simulation-based analyses.

Thus far, two major groups of approaches are commonly used for
steady state hydraulic analysis (Todini and Rossman, 2013). The early
local approaches (Cross, 1936), which solve one equation at a time,
and the more recent simultaneous equation approaches including:
the simultaneous loop method (Epp and Fowler, 1970); the simul-
taneous node method (Martin and Peters, 1963; Shamir and Howard,
1968); the simultaneous pipe method (Wood and Charles, 1972); the
hybrid approach (Hamam and Brameller, 1971; Osiadacz, 1987) and
the Global Gradient Algorithm (Todini and Pilati, 1988; Salgado et al.,
1988). These methods have been developed and coded over the last
56 years (Ormsbee, 2006). Most notably, the EPANET software
(Rossman, 2000), which is the most widely used water network
simulation package, has realized extremely speedy and stable hy-
draulic simulation through the application of Todini’s approach and
sophisticated code design. Recently, the upcoming EPANET 3.0 is
expected to improve the computation efficiency even further by
using modified node reordering techniques.

To speedup the simulation, the Newton—Raphson method is
applied as an extension of the Hardy Cross method (Todini and
Pilati, 1988). By simultaneously considering all loops or nodes in
the whole system (Featherstone and Nalluri, 1988; Bhave, 2003;


Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:dkg630630@gmail.com
mailto:uzj2016@gmail.com
mailto:Gregor.Burger@uibk.ac.at
mailto:chien-hsun.chen@uibk.ac.at
mailto:Wolfgang.Rauch@uibk.ac.at
mailto:zhouyw68@bjut.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2013.09.025&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2013.09.025
http://dx.doi.org/10.1016/j.envsoft.2013.09.025
http://dx.doi.org/10.1016/j.envsoft.2013.09.025

254 K. Diao et al. / Environmental Modelling & Software 52 (2014) 253—263

Crous, 2009; Crous et al., 2012), the method converges faster than
any method that corrects either the flow or the head at a single
component in the system (Featherstone and Nalluri, 1988; Bhave,
2003; Crous, 2009; Crous et al., 2012). The Newton-based linear
theory method simplifies the solution scheme by converting the
system of equations into a set of linear equations, i.e. linearization
of the non-linear equations governing the conservation of mass
(Featherstone and Nalluri, 1988). The Gradient Algorithm (GA)
constructs a linear system with its coefficient matrix being sym-
metrical and positive definite (Stieltjes type). Subsequently, the
system can be efficiently solved for both the unknown heads and
unknown pipe flows simultaneously using a variety of methods,
such as the Conjugate Gradient Method, the Incomplete Cholesky
Factorization, or the Modified Conjugate Gradient Method (Todini
and Pilati, 1988). The Two Point Linear Method (Van Zyl et al.,
2008) reduces computational cost by trading off accuracy and
convergence speed. Furthermore, as a flow range is assigned to
each pipe, the accuracy of the solution can be checked for each pipe
before conducting another full iteration. Zecchin et al. (2012)
proved the efficiency of using the algebraic multigrid (AMG)
method, which is a defect-correction approach that iteratively
corrects an approximate solution of the original system using so-
lutions from a sequence of constructed lower dimensional systems.

Alonso et al. (2000) implemented parallel computing in hy-
draulic simulations based on the multifrontal Cholesky method.
Crous (2009), Crous et al. (2012) examined the feasibility of using
graphical processing units (GPU) with the Conjugate Gradient
Method. Thus far, however, these studies do not indicate that
application of parallel processing to hydraulic network solvers
guarantees more efficient computation. This is due to the overhead,
of which the extra cost cannot be compensated unless for excep-
tionally large water distribution models (Crous et al. 2012).

This study aims at making a substantial modification on the
computation scheme of the hydraulic simulation in order to reduce
the computational complexity, and consequently to increase
simulation efficiency. Accordingly, the Schur complement domain
decomposition method (Toselli and Widlund, 2005) is applied. The
algorithm is based on subdivision of the domain into smaller sub-
domains and reordering of the nodes within the sub-domains
(Aleksandrov and Samuel, 2010). Thus, the solution of a large sys-
tem of linear equations (the domain) is converted to the solution of
a series of smaller systems (the sub-domains). Consequently, a
nearly linear computation complexity can be reached. In terms of
the water distribution systems, the domain is the whole system and
the sub-domains are subsystems specified after decomposition. As
it is not uncommon that a distribution system is divided into
smaller metered subsystems to improve water audit (Farley, 2001;
Thornton et al., 2008), the computation scheme could therefore be
formed based on the subsystems’ layout. Hence, in the context of
water distribution systems, this method has a close tie to practice
instead of being an abstract mathematical concept.

2. The Schur complement domain decomposition method

The hydraulic simulation could be formulated to the iterative solution of a
sequence of systems of linear equations (Ax = b). For different solution methods (e.g.
the simultaneous loop method; the Global Gradient Algorithm, etc.), different sys-
tems (Ax = b) are specified (Boulos et al., 2006; Ormsbee, 2006). In this study, the
Global Gradient Algorithm (GGA) is selected to formulate the equations (for details
refer to the appendix), since it is currently the most efficient solution method.
However, the proposed decomposition method is general applicable to all solution
methods of water distribution simulation.

To implement the Schur complement domain decomposition method, the whole
distribution system is first divided into a number of subsystems. Correspondingly,
the system of linear equations (Ax = b) is decomposed into a set of matrix equations
with reduced dimensionalities. Thus, the problem is converted from solving a huge
dimensional system into solving sequentially a series of low dimensional sub-
systems (Kron, 1963; Tselishcheva and Shishkin, 2008).

2.1. System decomposition: nested dissection partitioning

System decomposition is the prerequisite for using the domain decomposition
method. In this regard, graph partitioning algorithms can be used for distribution
system decomposition based on mapping the system into an undirected graph
G = (V, E) in which the vertices V represent consumers, sources, and tanks - the
edges E the connecting pipes, pumps, and valves (Perelman and Ostfeld, 2011).
Corresponding to the hydraulic simulation scheme, the vertices represent rows and
columns of the system of linear equations, and an edge represents a nonzero entry in
the coefficient matrix (A) representing the system.

In this study, the graph partitioning package METIS is invoked to nested
dissection partitioning (Karypis and Kumar, 1998a,b). Operated with the reduced-
size graph, the partitioning algorithms in METIS are extremely fast compared to
traditional partitioning algorithms that compute a partition directly on the original
graph. Extensive testing has also shown that the partitions provided by METIS are
consistently better than those produced by spectral partitioning algorithms (Karypis
and Kumar, 1998a,b; Miettinen et al., 2006). Nested dissection (George, 1973) is an
approach that recursively splits a graph into almost equally-sized (balanced
numbers of components) subgraphs using separators. The removal of small subsets
of components in the graph (e.g. vertices and/or edges) allows the graph to be
partitioned into subgraphs with at most a constant fraction of the number of
components. At each level of recursion, the components of the graph are numbered
in such a way that the separator components are ordered after the components in
the partitions (Karypis and Kumar, 1998a,b). Based on the reordering strategy above,
the original system of linear equations is transformed into a linear, bordered, block-
diagonal model (Eq. (1)) (Kron, 1963).

For the application to water distribution systems, a simple example is given in
Figs. 1 and 2. As shown in Fig. 1, the network is divided into two subsystems using
the specified separators. Selecting both a pipe and a node as separators is a result of
using the GGA that solves the pipe flows and nodal heads simultaneously. By such a
division, each sub matrix equation will have the same form as the whole matrix
equation of the GGA (Appendix). Consequently, the accuracy and stability of the
simulation is guaranteed. After the decomposition, the two subsystems are nearly
equally-sized with 6 components (in subsystem 1) and 5 components (in subsystem
2), respectively. Based on the decomposition, the coefficient matrix (A) is reordered
by numbering the components in subsystems first and then the components in
separators (Fig. 2).

2.2. The Schur complement domain decomposition algorithm

This section introduces how the Schur complement domain decomposition
method is applied to solve the linear, bordered, block-diagonal model (Eq. (1)).
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In Eq. (1), Ay is the coefficient matrix of subsystem i, and N is the total number
of subsystems; A is the coefficient matrix of the separators. A;p) represents the
coupling between subsystem i and the separators, in which the nonzero entries
correspond to edges connecting them. Ag;) = A(T,-VB); Xy and Xp are unknowns for
subsystem i and the separators respectively. b(; and bp are right hand side terms for
subsystem i and the separators respectively. In each matrix or vector introduced
above, all the entries are hydraulic method-specific since different hydraulic
methods would formulate different systems of linear equations (Ax = b) (Boulos
et al., 2006; Ormsbee, 2006). For this study, the Global Gradient Algorithm (GGA)
is applied to build the equations (See as the Appendix).

From Eq. (1), it yields,

A X +AipXs = b (2)
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Fig. 1. A water distribution system graph partitioned using nested dissection.
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