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a b s t r a c t

Dynamic crop simulation models are widely used to investigate, through virtual experiments, the
response of crop yield to changes in climate, management or crop genetic traits. In a search for wide-
spread applicability, crop models include a large number of processes, sometimes to the detriment of
their mathematical transparency.

Simulated crop yield responses to variation in model inputs result from the integration over a long
period (one or several years) of many different crop processes interacting at the model time-step,
typically the day. Thus, by definition, yield explanatory factors are intricate and difficult to link effi-
ciently to the crop processes. Ranking their relative contributions to the final yield output is for example
almost impossible.

In this work, we introduce a new approach to understand the response of crop yield Y by comparing
two simulation runs (computing two yields Y1 and Y2) of the same model and by focussing on the relative
yield: y ¼ Y1/Y2. Providing that the mathematical formulation of the dynamic crop model verifies simple
hypotheses held by most crop models, we show that it is possible to factorise the relative yield y into
several terms. These terms can be (i) interpreted as the specific effects of the modelled crop processes on
the crop yield, (ii) compared to rank the effects of the crop processes on the crop yield. Their definition
involves using state variables of the model computed during the simulation runs. The method does not
involve running the model numerous times, neither changing its formulation. It may require to output
new variables that are not in the set of variables proposed by the released version of the model. We call
our method the relative yield decomposition (RYD) method.

We illustrate how the RYD provides insight in the analysis of complex crop models by applying it to
two models: Yield-SAFE (agroforestry model) and STICS (crop model). The method allows to identify and
quantify the importance of the main processes responsible for crop yield variations for different simu-
lation configurations in the two models.

The relative yield decomposition method is complementary to other model analysis methods like
sensitivity analysis or multiple model simulations. We show that it could be applied to some widely used
crop models (e.g. AQUACROP, CERES, CROPGRO, CROPSYST, EPIC, SIRIUS, SUCROS). The relative yield
decomposition method appears as a powerful and generic tool to analyse the behaviour of complex crop
models that can help to improve the formulation of the models, or even to study specific plant traits or
crop processes when applied to a model accurate enough.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since the development of early crop simulation models on
mainframe computers in the 1960s (Loomis and Williams, 1962;

Bouman et al., 1996; Graves et al., 2005) the use of dynamic
simulation models of tree and crop growth, either in pure or mixed
systems has expanded, facilitated by advances in modern
computing technology. Such crop simulation models (we use this
term broadly to refer to all models that simulate the growth of
crops and trees in pure or mixed systems) have been used in
research, education, and decision-making (Matthews and Stephens,
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2002). Within these arenas, they are widely used to investigate the
behaviour of crop, tree, and crop-tree systems through “virtual”
experimentation, especially when analysing the gap between
actual and potential yields (Lobell et al., 2009). They have also been
used to exploremanagement options (e.g. DeJonge et al., 2007; Tojo
Soler et al., 2007; Shili-Touzi et al., 2010), to assess the potential of
cultivars with different phenotypic or genetic traits (e.g. Asseng
et al., 2002; Debaeke, 2004; Chenu et al., 2009; Semenov et al.,
2009), and to predict the behaviour of crop systems under
climate change (e.g. Asseng et al., 2004; Meza and Silva, 2009;
Lhomme et al., 2009; Liu et al., 2010).

Dynamic crop simulation models generally work on a time-step
that is suited to the mechanisms involved in crop growth (sub-daily
to daily time-step), whichwe refer to here as the “model time-step”.
The causal links between the input variables (for climate, soil, and
management), and the state variables of the system (including
those for crop growth) are defined at this time-step by the equa-
tions of the model. However, the evaluation of cropping systems is
achieved through the use of outputs calculated at a longer time-step
(one year to several decades), which we refer to as the “analysis
time-step”. At this time-step, the crop yield Y is a very complex
function of the inputs and parameters of the model. Understanding
how the final yield is achieved, what the key processes and in-
fluences are, andwhen the critical phases occur, is essential for both
model users and developers. However, there are few analytical
methods that can provide a means of achieving such insight.

The most frequently used approaches consist in analysing the
response of the crop yield Y to variations in parameters and input
variables. This can be achieved either through sensitivity analysis
(on parameters or input variables) or by comparing multiple sim-
ulations, obtained after “switching off” selected crop processes
within the model. Sensitivity analysis is widely used to understand
the effect of parameter variation onmodel outputs. This has various
critical uses, such as verification and debugging of models, as well
as identification of sensitive parameters that, for example, need
extra care in measurement or assessment, because they dominate

the response of the model (Keesman et al., 2011). In the case of crop
growth models, sensitivity analysis has been used to provide sta-
tistical data on the relationship between simulated yield andmodel
inputs in order to understand the behaviour of simulated crop
growth (Wang et al., 2013; Carpani et al., 2012; Pogson et al., 2012;
Confalonieri et al., 2010; Makowski et al., 2006). This information
can then be directly related to the crop processes, provided the
studied parameters have a biophysical meaning. A second approach
consists in comparing different model formulations so that the
effect of a given process in determining crop yield can then be
identified by comparing the model output with and without that
process. Cox et al. (2006) and Crout et al. (2009) proposed such a
methodology to simplify mechanistic models. Affholder et al.
(2003) ran simulations with and without water and/or nitrogen
stress with the STICS crop model (Brisson et al., 2009) to conduct a
yield gap analysis in a farmer’s field network. This approach actu-
ally considers different models to generate and compare different
simulated yields. If this approach provides useful information on
the yield factors, it does not give direct insight on how one simu-
lated yield produced by one simulation run is explained by the
different crop processes. For example, comparing the yield with or
without water stress is different to directly quantifying how much
water stress has impacted the simulated yield in comparison with
other abiotic stresses.

In order to overcome these drawbacks, we developed a new
approach to understand the response of crop yield Y by comparing
two simulation runs (computing two yields Y1 and Y2) of the same
model and by focussing on the relative yield: y¼ Y1/Y2. Our method
applies to models verifying two hypotheses used by most crop
models: firstly, the final yield value must be defined as a sum of
positive yield increments at the various model time-steps; sec-
ondly, for all time-steps of the model, the yield increments must be
written as a product of positive factors. We show that it is then
possible to factorise the relative yield y into several factors which (i)
can be interpreted as the specific effects of the modelled crop
processes on the crop yield, (ii) can be compared to rank the effects

Notations

Upper case letters refer to absolute variables, while lower case
letters refer to relative variables. Relative variables are
defined as the ratio of the absolute values for the
scenario under analysis compared to the reference
scenario x ¼ X/X* where superscript * refers to the

reference scenario.
Letters with superscript t refer to values at the model time-step

t while letters without superscript
refer either to values independent
from time or values averaged or
accumulated with time.

A light capture efficiency
B biomass
C incident light
D density for agroforestry systems: proportion of

cropped area for crops, tree density for trees.
Ei generic notation for the effect of yield reducing factor i
Eij1:(i�1) effect of factor i knowing the effects of all yield

reducing factors from the first to the (i�1)th. The
corresponding mathematical definition (see Section 2)

is: Eij1:ði�1Þ ¼ P
t

Et
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Eti

F effect of vigour at flowering stage on harvest index
(model STICS)

G effect of the length of grain filling stage on harvest
index (model STICS)

H harvest index
I light competition index
L light intercepted
M effect of maintenance cost on harvest index for trees

(model Yield-SAFE)
N nitrogen stress effect on light use efficiency (model

STICS)
P effect of crop phenology on light use efficiency (model

STICS)
R light use efficiency R ¼ B/L
S effect of light saturation on light use efficiency (model

STICS)
T effect of extreme temperatures on light use efficiency

(model STICS)
U effect of extreme temperatures on harvest index

(model STICS)
W water stress effect on light use efficiency
wt

ij1:ði�1Þ weights of the effects Etij1:ði�1Þ at the model time-step
in the calculation of the average effect Eij1:(i�1) at the
analysis time-step.

Y yield, referring to grain biomass for crops, and timber
biomass for trees.
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