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Sensitivity analysis (SA) is a commonly used approach for identifying important parameters that dominate
model behaviors. We use a newly developed software package, a Problem Solving environment for Un-
certainty Analysis and Design Exploration (PSUADE), to evaluate the effectiveness and efficiency of ten
widely used SA methods, including seven qualitative and three quantitative ones. All SA methods are tested
using avariety of sampling techniques to screen out the most sensitive (i.e., important) parameters from the
insensitive ones. The Sacramento Soil Moisture Accounting (SAC-SMA) model, which has thirteen tunable
parameters, is used for illustration. The South Branch Potomac River basin near Springfield, West Virginia in
the U.S. is chosen as the study area. The key findings from this study are: (1) For qualitative SA methods,
Correlation Analysis (CA), Regression Analysis (RA), and Gaussian Process (GP) screening methods are
shown to be not effective in this example. Morris One-At-a-Time (MOAT) screening is the most efficient,
needing only 280 samples to identify the most important parameters, but it is the least robust method.
Multivariate Adaptive Regression Splines (MARS), Delta Test (DT) and Sum-Of-Trees (SOT) screening
methods need about 400—600 samples for the same purpose. Monte Carlo (MC), Orthogonal Array (OA) and
Orthogonal Array based Latin Hypercube (OALH) are appropriate sampling techniques for them; (2) For
quantitative SA methods, at least 2777 samples are needed for Fourier Amplitude Sensitivity Test (FAST) to
identity parameter main effect. McKay method needs about 360 samples to evaluate the main effect, more
than 1000 samples to assess the two-way interaction effect. OALH and LP; (LPTAU) sampling techniques are
more appropriate for McKay method. For the Sobol’ method, the minimum samples needed are 1050 to
compute the first-order and total sensitivity indices correctly. These comparisons show that qualitative SA
methods are more efficient but less accurate and robust than quantitative ones.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Software availability

Name of software: PSUADE
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1. Introduction

Computer-based system models have become indispensable in
many fields of science and engineering, from finance to life sci-
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ences, from quantum physics to earth sciences and environmental
engineering. Parameters of these models exert great influence on
models’ performance. Some of the parameters may be observed or
measured, e.g., the physical dimensions of an object or the
geomorphological features of a watershed such as slope, area size
and elevation. But there are many parameters that are not directly
observable, at least not at the scale of modeling units. For example,
parameters commonly used in hydrologic models, such as satu-
rated soil hydraulic conductivity or saturated soil matric potential,
may be observable at a point scale, but not over a large area. In
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this case, “effective” values must be estimated so mathematical
equations established at a point scale can be extended to an areal
scale (Bloschl and Sivapalan, 1995). There is a class of models
known as conceptual models whose parameters are generally non-
observable and are only related to physical properties indirectly.
For example, the parameters in many conceptual rainfall-runoff
(CRR) models are not observable and must be calibrated so model
simulations closely match observations (Duan et al., 1992).

How to specify system model parameters properly is not a trivial
issue (Sorooshian and Gupta, 1983; Duan et al., 1992, 2006; Kavetski
etal., 2003). The combined effect of several factors, including errors
in observational data, choices of calibration methods and criterias,
and model formulation errors, makes parameter estimation being a
difficult task. This difficulty is further compounded by over-
parameterization problems as today’s models are getting increas-
ingly complex in a trend to include more and more sub-physics, but
the calibration of these models is still done with rather limited data
(Jakeman and Hornberger, 1993; Renard et al., 2010; Clark et al.,
2011). Over-parameterization, along with parameter interactions
(due to high nonlinearity of model equations), causes model pa-
rameters to be not uniquely identifiable. Beven (2006) termed this
phenomenon as equifinality, i.e., different parameter sets would
result in the same or similar model performance measures. Another
potential cause for equifinality may be due to a phenomenon known
as “numerical daemon” by Kavetski and Clark (2010). One possible
way to mitigate over-parameterization/non-identifiability is
reducing the number of parameters to a small number that can be
sufficiently calibrated with limited data.

To discern which parameters have the most influence over
model performance and to identify what are the most appropriate
parameter values, we need to find a way to screen out sensitive
parameters and quantitatively evaluate the influence of each
parameter on model performance. Sensitivity analysis (SA) has
been used by many people for this purpose (Liu et al., 2004; van
Griensven et al., 2006; Campolongo et al., 2007; Borgonovo et al.,
2012). SA can identify parameters of which a reduction in uncer-
tainty specification will have the most significant impact on
improving model performance measures. Thus, if some non-
influential parameters can be identified and fixed reasonably at
given values over their ranges, the computational cost may
decrease without reducing model performance.

There are many different SA approaches. Overall, they can be
categorized into two groups: local SA and global SA. The local SA ex-
plores the changes of model response by varying one parameter while
keeping other parameters constant. The simplest and most common
approach is differential SA (DSA), which uses partial derivatives or
finite differences of parameters at a fixed parameter location as the
measure of parametric sensitivity. Though simple and intuitive, DSA
measures only local sensitivity whose value is obviously location
dependent. On the other hand, the global SA examines the changes of
model response by varying all parameters at the same time. Gener-
alized SA (GSA) method is one of the global SA methods that are
designed to overcome the limitations of local SA methods. A version of
GSA method, as implemented in Hornberger and Spear (1981), first
creates a large number of random parameter sets using the Monte
Carlo (MC) (Meteopolis and Ulam, 1949) sampling technique. It then
breaks the random parameter sets into behavioral and non-behavioral
sets based on a pre-specified threshold for acceptance of model
behavior. The frequency density distributions of model performance
measures along each parameter axis in the behavioral sub-set are used
as indicators of parametric sensitivities. GSA forms the basis for the
Generalized Likelihood Uncertainty Estimation (GLUE) method
developed by Beven and Binley (1992). GSA is simple to implement
and can work with different pseudo-likelihood (i.e., goodness of fit)
measures (Beven, 2004), but it is computationally inefficient.

Global SA approaches based on design of experiment (DOE)
have gained popularity recently because they offer global sensi-
tivity measures while maintaining computational efficiency. A
typical DOE-based SA method involves two steps: first, generating a
sample set of parameters within the feasible parameter spaces
using a chosen design; and then, obtaining a quantitative attribu-
tion of model output variation due to the variation of different
parameters. There are many sampling techniques, such as MC, Latin
Hypercube (LH) (McKay et al., 1979), Orthogonal Array (OA) (Owen,
1992) and Orthogonal Array based Latin Hypercube (OALH) (Tang,
1993), which are commonly used for DOE-based SA. Some DOE-
based SA methods, such as Morris One-At-a-Time (MOAT)
(Morris, 1991), Fourier Amplitude Sensitivity Test (FAST) (Cukier
et al.,, 1973), and extended Sobol’ method (Saltelli, 2002), require
special sampling techniques. More recently, along with the devel-
opment of response surface methods (RSM), SA based on RSM
makes it cheaper for estimating parameter effects (Ratto et al.,
2007; Shahsavani and Grimvall, 2011).

Saltelli et al. (2008) provided a comprehensive exposition of
contemporarily available SA methods. Tong (2005) developed a
software package, called a Problem Solving environment for Un-
certainty Analysis and Design Exploration (PSUADE) and containing
a wide array of different uncertainty quantification (UQ) methods,
including many SA methods. PSUADE has been used successfully for
many applications. Hsieh (2006) demonstrated the process of using
PSUADE for UQ of the Steven Impact Test problem. Wembhoff and
Hsieh (2007) used PSUADE to calibrate the Prout—Tompkins
chemical kinetic model. Tong (2008) applied a variety of UQ tech-
niques to the study of a two-dimensional soil-foundation structure-
interaction system subjected to earthquake excitation using
PSUADE. Tong and Graziani (2008) described a global SA method-
ology implemented in PSUADE that is specifically designed for
general multi-physics application of large complex system models.
Snow and Bajaj (2010) adopted the PSUADE for uncertainty analysis
of a comprehensive electrostatic Micro-Electro Mechanical Systems
(MEMS) switch model.

The aforementioned works have been focused on applying a
subset of the UQ methods available within PSUADE. The purpose of
this paper is to explore the effectiveness and efficiency of various
SA methods in PSUDAE in identifying sensitive parameters of
system models, and provide useful guidance on selecting appro-
priate SA procedures for other applications. We test all available SA
methods with a very simple conceptual hydrologic model — Sac-
ramento Soil Moisture Accounting (SAC-SMA) model (Burnash
et al,, 1973). The generality of the findings in this paper would
need further works on more complex models and more catchments
with different characteristics. This paper is organized as follows.
Section 2 offers a brief description of the PSUADE software. Section
3 describes the model, data and experimental methods used in the
study. Section 4 presents the results and discussion. And finally, we
make some concluding remarks in Section 5.

2. The PSUADE software

PSUADE is a C++ based open-source software package devel-
oped to provide an integrated design and analysis environment for
performing UQ for large complex system models. This software is
available via https://computation.linl.gov/casc/uncertainty_
quantification/. The flow chart for implementing PSUADE for UQ
is shown in Fig. 1. The three parts in bold italic are basic elements of
PSUADE:

e The experimental design techniques (Sample generator)
o The simulator execution environment (Driver)
o The analysis toolset (Analysis tool)
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