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a b s t r a c t

Optimal regulation of stochastically behaving agents is essential to achieve a robust aggregate behavior
in a swarm of agents. How optimally these behaviors are controlled leads to the problem of designing
optimal control architectures. In this paper, we propose a novel broadcast stochastic receding horizon
control architecture as an optimal strategy for stabilizing a swarm of stochastically behaving agents. The
goal is to design, at each time step, an optimal control law in the receding horizon control framework
using collective system behavior as the only available feedback information and broadcast it to all agents
to achieve the desired system behavior. Using probabilistic tools, a conditional expectation based predic-
tive model is derived to represent the ensemble behavior of a swarm of independently behaving agents
with multi-state transitions. A stochastic finite receding horizon control problem is formulated to sta-
bilize the aggregate behavior of agents. Analytical and simulation results are presented for a two-state
multi-agent system. Stability of the closed-loop system is guaranteed using the supermartingale theory.
Almost sure (with probability 1) convergence of the closed-loop system to the desired target is ensured.
Finally, conclusions are presented.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Regulating a swarm of stochastic entities simultaneously with
the goal of achieving a desired aggregate behavior has long been
of interest in several disciplines. Since the last decade, this interest
has grownwith a burst of emerging applications in submicroscopic
level systems. Examples include the design of smart robots and
multi-agent intelligent systems for applications in automation (see
Chattopadhyay and Ray (2009), Ueda, Odhner, and Asada (2007)
and references therein), regulation of submicroscopic particles in
microfluidic systems for fascinating applications in drug delivery
and laboratory-on-a-chip technology (Ashkin, 2000; Edwards, En-
gheta, & Evoy, 2005; Grier, 2003) suppression of the Brownianmo-
tion of subcellular biological structures suspended in a solution for
revealing their intrinsic behaviors (Cohen & Moerner, 2006; Gosse
& Croquette, 2002) etc. In all these novel applications, the primary
goal is to achieve a desired system behavior optimally by regulat-
ing behaviors of individual entities within the system.

✩ Financial support from the US National Science Foundation through the Cyber
Enabled Discovery and Innovation (CDI) program, and the Rossin fellowship at
Lehigh University is gratefully acknowledged. The material in this paper was
presented at the AIChE Annual Meeting in the Computing and Systems Technology
(CAST) division, November 8–13, 2009, Nashville, Tennessee, USA. This paper was
recommended for publication in revised form by Associate Editor Hideaki Ishii
under the direction of Editor Ian R. Petersen.

E-mail addresses: gak206@gmail.com (G. Kumar),
mayuresh.kothare@lehigh.edu (M.V. Kothare).
1 Tel.: +1 610 758 6654; fax: +1 610 758 5057.

Historically, the theory of optimal control policies in stabiliz-
ing stochastic dynamical systems traces back to the seminal results
of Kalman (1960) and Kushner (1964). These results provide a the-
oretical frameworkwhich allows the incorporation of probabilistic
tools, such as conditional expectations and the theory of mar-
tingales (Durrett, 2005), in designing closed-loop control policies
for such systems (Kushner, 1967). Incorporation of receding hori-
zon based predictive control policies (Kwon & Han, 2005) within
this framework can potentially result in a unique optimal control
strategy for stabilizing stochastic dynamical systems. A recent ap-
plication on stabilization of linear stochastic systems with mul-
tiplicative noise and linear constraints (see Primbs (2009) and
references therein) shows the capability of this framework for
designing a model based receding horizon control (RHC) policy.
However, a direct application of this framework in regulating the
stochastic behavior of a swarmof agents is limited by the complex-
ity in assigning individual controllers to each of the agents in the
system with very few available actuators.

Asada andhis group (Ueda et al., 2007) have recently introduced
the concept of broadcast feedback control, a centralized control
strategy, for stabilizing the aggregate behavior of a vast number
of identical agents when limited feedback information is available
from the system. The authors have applied this control framework
to the problems of endothelial cell migration (Wood, Das, Kamm,
& Asada, 2009) and artificial muscle actuators (Odhner, Ueda, &
Asada, 2007; Ueda et al., 2007). Similar control architecture has
later been applied to achieve the desired aggregate behavior in a
colony of E. coli bacteria (Julius et al., 2008) and in supervising a
swarm of simple agents (Chattopadhyay & Ray, 2009). In all these

0005-1098/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.automatica.2013.09.002

http://dx.doi.org/10.1016/j.automatica.2013.09.002
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2013.09.002&domain=pdf
mailto:gak206@gmail.com
mailto:mayuresh.kothare@lehigh.edu
http://dx.doi.org/10.1016/j.automatica.2013.09.002


G. Kumar, M.V. Kothare / Automatica 49 (2013) 3600–3606 3601

Fig. 1. Broadcast Stochastic Receding Horizon Control (BSRHC): here at the current
time step k, the ‘‘Receding Horizon Controller’’ designs control inputs, ‘‘uk|k ’’ and
‘‘Broadcast’’ them to the system (‘‘Agents Ensemble’’). Each agent in the system
makes an independent stochastic decision and contributes to the ‘‘Cumulative
Response’’ of the system. The ‘‘Cumulative Response’’ of the system is then
compared with the ‘‘Desired Target’’ and the ‘‘System Error’’ is fed back to the
controller for designing new control inputs at time step k + 1.

works, the dynamical behavior of individual agents in the system
has been represented by the finite state Markov chain model and
their state transition probabilities have been used as manipulated
variables to achieve the desired system behavior. The computed
transition probabilities in most of these works are non-optimal
(except Odhner et al. (2007), Odhner and Asada (2010)) whichmay
lead to an overall poor performance of the system.

Motivated by this, in this paper, we develop an optimal con-
trol strategy called ‘‘Broadcast Stochastic RecedingHorizon Control
(BSRHC)’’ for regulating the ensemble behavior of stochastically
behaving agents. The central idea of the proposed strategy is to de-
sign and broadcast the optimal control input in a predictive frame-
work to all the agents in a swarm using the aggregate behavior of
agents as the only available feedback information. Our novelty here
is in integrating the broadcast conceptwith the existing probabilis-
tic tools and the theory of finite receding horizon based optimal
control policy. Fig. 1 illustrates the overall framework of ‘‘BSRHC’’.

We theoretically demonstrate the stabilization of a swarm of
stochastically behaving agents to the desired state in the frame-
work of ‘‘BSRHC’’. The need to regulate a swarm of agents simul-
taneously using a centralized controller as well as the presence of
non-linear constraints on control inputsmake the framework suit-
able for the particular problem. The dynamical behavior of individ-
ual agents is represented by the discrete time finite state Markov
chain model. The controller uses the measured aggregate system
error as the only available feedback information and designs the
optimal control inputs in a predictive framework. The computed
control inputs are the state transition probabilities of the agents
which are then broadcast to all agents in the swarm to achieve
the desired system behavior. Probabilistic tools such as the su-
permartingale theory and the bounded convergence theorem are
applied to guarantee the almost sure convergence of the closed-
loop system behavior to the desired one. The derived stability and
convergence results establish key principles applicable to stabilize
general stochastic dynamical systems.

The paper starts with the definition of a two-state multi-agent
systemwhich is followed by the formulation of a constrained finite
horizon ‘‘BSRHC’’ problem to achieve desired system behavior of a
swarm of agents and the development of predictive models of the
system. Next, we establish convergence and stability conditions
for the closed-loop system. Analytical and numerical solutions of
the system of two-state agents are provided next to support the
concept of ‘‘Broadcast RHC’’ and establish the underlying stability
and convergence theorem. Finally, we extend the capability of the
‘‘BSRHC’’ design to multi-state multi-agent systems.

Fig. 2. State transition behavior of agents in a two-state multi-agent system. pk|k
and qk|k are the transition probabilities at time k.

2. Stochastic two-state multi-agent system

We define a stochastic two-state multi-agent system as an en-
semble of agents, where each agent assumes a state value stochas-
tically out of two possible states. Each state has an associated value
which is defined as

Xi,k =


1 when ‘‘ON’’,
0 when ‘‘OFF’’. (1)

Xi,k is the state of the ith agent at time k. We assume that all agents
in this system behave independently. At time k, an agent at the
state ‘ON’ can make transition to ‘OFF’ with a transition probabil-
ity pk|k. Similarly, an agent at the state ‘OFF’ can make transition
to ‘ON’ with a transition probability qk|k. Fig. 2 illustrates the state
transition behavior of agents in a two-state multi-agent system.

We define the ensemble behavior of the system at time k as

Nk =

N
i=1

Xi,k. (2)

Nk is the number of agents at the state ‘ON’ at time k. N is the
predefined number of agents present in the system. We define the
system error at time k as ek = Nr − Nk, where Nr is the time
invariant desired number of agents possessing ‘ON’ state.

2.1. Broadcast finite stochastic RHC problem

We formulate a constrained non-linear finite stochastic RHC
problem at time k as follows:

min
pk|k,...,pk+Nc−1|k,

qk|k,...,qk+Nc−1|k

Jk (3)

s.t.

(pk+m|k, qk+m|k) ∈ [0, 1] × [0, 1] for 0 ≤ m ≤ Nc − 1, (4a)

pk+m|k = qk+m|k = 0 form ≥ Nc, (4b)

E[e2k+m+1 | Fk] < e2k for ek ≠ 0, 0 ≤ m ≤ Nc − 1, (4c)

E[e2k+m+1 | Fk] = e2k for ek = 0, 0 ≤ m ≤ Nc − 1. (4d)

The cost function Jk at time k is defined as

Jk =

Np−1
m=0

E[e2k+m+1 | Fk] +

Nc−1
n=0

(p2k+n|k + q2k+n|k). (5)

Np andNc are time invariant prediction and control horizon respec-
tively.

2.2. System model

To compute the conditional expectations appeared in (4c), (4d)
and (5), we write the conditional expectation of the number of
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