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Sensitivity analysis aims to characterize factors (i.e., model inputs) accounting for the amount of un-
certainty in model output. Input factors are usually assumed to be independent, which may lead to
incorrect conclusions. In this study, a combined sensitivity analysis approach, composed of the Sobol’ and
Importance Measurement (IM) methods, is applied on a pesticide environmental risk indicator (called
PURE), where main, interaction, and correlation effects (i.e., the effects of factor correlations on sensi-
tivity indices) are all addressed. PURE calculates pesticide risk scores for air, soil, groundwater, and
surface water based on pesticide properties and surrounding environmental conditions. The Sobol’
method calculates the first-order sensitivity index (S;) and the total-effect sensitivity index (Sy;) in
noncorrelated-factor setting to address the main and interaction effects; while the IM method calculates
Siin both noncorrelated-factor and correlated-factor settings to show the correlation effects. In the tested
case, the S; estimations in noncorrelated-factor setting by the Sobol’ and IM methods are very similar,
which not only cross-validates the main effect estimations by the two different methods, but also pro-
vides the common ground for combining the two methods to address both interaction and correlation
effects. In addition, the S; estimations in correlated-factor setting are relatively different from the ones in
noncorrelated-factor setting, which demonstrates that it is cautious to assume all factors are indepen-
dent in sensitivity analysis. Take the soil risk evaluation as an example, the positive correlation between
the chronic no-observed-effect concentration and acute 50%-lethal concentration to earthworms largely
increases the S; of the latter factor. The results of S; estimations show that the risk scores for air, soil,
groundwater, and surface water are most sensitive to the application rate of pesticide product, the
application rate of pesticide active ingredient, the organic carbon sorption constant, and the monthly
maximum daily water input, respectively. In summary, while this study enhances the understanding of
PURE, it also provides an option for investigating both interaction and correlation effects, and hence
promotes sensitivity analysis with factor-correlation structures in environmental modeling.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Pesticide risk is determined by pesticide exposure to nontargeted
organisms and the caused effects, but the risk value is difficult to

Pesticide use, along with fertilizer, newly bred crop cultivars,
and machinery, assures that agricultural production keeps pace
with global population growth. However, many pesticides are toxic,
persistent, and mobile. A large portion of the pesticides don’t reach
their targets but were transported or emitted to the environment,
posing risks to ecosystems and human health (Bolognesi, 2003).
Stakeholders seek available tools for assessing pesticide risk and
choosing appropriate low risk pest management practices.
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measure. Therefore, an indicator approach, providing information
on variables that are difficult to access (Bockstaller et al., 2008), is
appropriate for pesticide risk assessment. In a broad sense, pesti-
cide environmental risk indicators are also a group of environ-
mental models. Numerous pesticide risk indicators have been
developed around the world (Bockstaller et al., 2009), such as the
Environmental Impact Quotient (EIQ) based on simple combina-
tions of important variables (Kovach et al., 1992) and the Environ-
mental Potential Risk Indicator for Pesticides (EPRIP) derived from
simple simulation models for predicting pesticide concentrations
(Trevisan et al., 2009). Whether employing complex (e.g., Simtnek
et al., 2003) or simple simulation models in developing pesticide
risk indicators depends on data availability and temporal—spatial
scales of assessment. While various types of pesticide
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environmental risk indicators exist, only one of 20 reviewed in-
dicators since year 2000 has been evaluated with sensitivity anal-
ysis. Nevertheless, sensitivity analysis is an essential step in
environmental model development (Jakeman et al., 2006) and one
of the important methods for analyzing uncertainty in the envi-
ronmental modelling process (Refsgaard et al., 2007).

Sensitivity analysis serves to characterize factors (i.e., model
input variables) accounting for the amount of uncertainty in model
output (Saltelli and Annoni, 2010), and the sensitivity analysis re-
sults are valuable to model diagnosis, interpretation, and parame-
terization, and prioritizing data collection (Berthiaume et al., 2010;
Confalonieri et al., 2010; Nossent et al., 2011; Pannell, 1997).
Sensitivity analysis methods can be classified into local and global
sensitivity analyses based on the techniques for exploring the input
factor space. Local sensitivity analysis exploits the factor space
around a specific point to study the effect of small variations of
factors on model output, and the result can be highly biased for
nonlinear models (Yang, 2011). On the contrary, global sensitivity
analysis exploits the entire factor space by simultaneously varying
all factors (Jacques et al.,, 2006; Lilburne and Tarantola, 2009).
Global sensitivity analysis techniques include (1) regression or
correlation based techniques, such as standardized regression co-
efficients and Spearman rank correlation coefficients; (2) elemen-
tary effect methods, including Morris (Campolongo et al., 2007;
Morris, 1991; Pujol, 2009), Latin Hypercube-OAT (van Griensven
et al., 2006), and winding stairs (Jansen, 1999), etc.; (3) meta-
modeling (emulation-based), such as high dimensional model
representation (HDMR) (Li et al., 2006, 2002; Rabitz et al., 1999)
and Gaussian emulators (Oakley and O’Hagan, 2004); and (4)
variance-based techniques, such as the Sobol’ method (Saltelli,
2002; Sobol’, 1993; Tarantola et al., 2006), Fourier amplitude
sensitivity test (FAST) (Cukier et al., 1973, 1975; McRae et al., 1982;
Saltelli et al., 1999), and the importance measurement (IM) method
(McKay, 1995). Variance-based sensitivity analysis techniques are
popular in environmental modeling (e.g., Nossent et al., 2011; Yang,
2011). In spite of the high computational expenses, variance-based
techniques are model independent, provide easy-interpretable
sensitivity indices, can capture interaction effects among factors,
and can handle qualitative and quantitative factors. Saltelli and
Annoni (2010) suggested using the Sobol’ method when input
factors are noncorrelated. Nevertheless, pesticide environmental
fate models, which are usually computational expensive, tended to
employ one-at-a-time sensitivity analysis methods (e.g., Dubus
et al., 2003; Ma et al., 2004).

Both interaction and correlation among input factors can affect
sensitivity analysis results. Interaction is a property of the model
while correlation is a property of input factors (Saltelli and
Tarantola, 2002). Interaction, or nonlinear effect, means that a
factor would act nonlinearly on the model output when its inter-
acted factors are at different values. In a case when factors are
correlated, fixing a factor would restrict the distributions of its
correlated factors, and hence the effect of the studied factor would
be carried over, which is referred to as the correlation effect here-
after. While interaction effects are usually studied, correlation ef-
fects are often ignored due to expensive computation cost (e.g.,
Nossent et al., 2011; Vezzaro and Mikkelsen, 2012). Nevertheless,
correlation commonly exists in real cases and may considerably
impact sensitivity analysis results (Saltelli and Tarantola, 2002).
Specifically in pesticide risk assessment, ignoring the existence of
correlation between input factors may have a significant effect on
the results of exposure assessments. Yet, to the authors’ knowledge,
none of the sensitivity analysis studies on pesticide risk assessment
or fate modelling have taken factor correlations into account,
except the regression-based sensitivity analysis study on three
pesticide leaching models (Soutter and Musy, 1999). A few methods

were developed for sensitivity analysis on correlated factors, such
as the IM method mentioned above (McKay, 1995), which was
employed by Saltelli and Tarantola (2002) and recommended by
Saltelli and Annoni (2010). In addition, sensitivity analysis with
correlated input factors may also be analyzed by emulation-based
methods, such as the local polynomial technique (Da Veiga et al.,
2009), the State Dependent Parameter (SDP) method (Ratto et al.,
2007), and the Bayesian approach (Oakley and O’Hagan, 2004);
nevertheless, they are more difficult to implement.

This study aims to enhance the understanding of the PURE
(Pesticide Use Risk Evaluation) indicator (Zhan and Zhang, 2012)
and to draw more attention to correlated factors in sensitivity
analysis of environmental models by applying a combined variance-
based sensitivity analysis approach. PURE is able to evaluate site-
specific risk to air, soil, groundwater, and surface water from agri-
cultural pesticide use. It employs the risk ratio approach (i.e., the
ratio of the predicted environmental concentration to the toxicity)
under worst case scenarios, which is also applied by the European
Union System for the Evaluation of Substances (EUSES) suited for
initial and refined risk assessments on industrial chemicals and
pesticides (Vermeire et al., 2005). PURE considers the short- and
long-term exposure levels, rather than the environmental fate at
equilibrium status that for example is evaluated by the Equilibrium
Concentration (EQC) model (Mackay et al., 19964, b, c).

The combined sensitivity analysis approach is composed of two
parts. The first part uses the Sobol’ method (Saltelli, 2002; Sobol’,
1993) to estimate the first-order sensitivity index or main effect
(S;) and the total sensitivity index or total effect (Sp) in
noncorrelated-factor setting. The second part uses the IM method
(McKay, 1995) to estimate S; in both noncorrelated-factor and
correlated-factor settings. The specific objectives of this study are
(1) to identify sensitive factors in PURE, with associated interaction
or correlation effects; (2) to compare S; estimations and convergence
between the Sobol’ and the IM methods in noncorrelated-factor
setting; and (3) to investigate the applicability of the combined
approach to evaluating interaction and the correlation effects. The
results and conclusions of this study are anticipated to improve the
confidence in the PURE risk scores and to promote sensitivity
analysis with correlated input factors in environmental modeling.

2. Materials and methods
2.1. Model description

The PURE indicator (Zhan and Zhang, 2012) is composed of four
submodels, including air, soil, groundwater, and surface water, with
outputs of risk scores Ry, Rs, Rg, and Ry, respectively. A stepwise
procedure is employed for each submodel except for the air
(Fig. A.1). First, Ry is based on the multiplication of the pesticide
application rate (RATE), the emission potential (EP) that is a pesti-
cide product property for estimating potential volatile organic
compound (VOC) emissions by the California Department of
Pesticide Regulation (CEPA, 2007), and the application method
adjustment factor (AMAF). Second, Rs is the maximum of the short-
term and long-term risk scores for soil, which are derived from the
ratios of the predicted short-term (PECss) and long-term (PECsp)
pesticide concentrations in topsoil to the acute and chronic pesti-
cide toxicities to earthworms, respectively. PECss is contributed by
the amount of the pesticide reaching ground right after the pesti-
cide application, while PECs; is the average concentration in topsoil
considering the decay of PECss during 21 days (the typical period for
measuring the chronic toxicity) after the application. Third, R; is
based on the ratio of the predicted pesticide concentration leaching
to groundwater (PEC;) to the acceptable daily intake (ADI). PECg is
calculated by using an adapted version of the attenuation factor
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