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a b s t r a c t

Downscaling techniques are used to obtain high-resolution climate projections for assessing the impacts
of climate change at a regional scale. This study presents a statistical downscaling tool, SCADS, based on
stepwise cluster analysis method. The SCADS uses a cluster tree to represent the complex relationship
between large-scale atmospheric variables (namely predictors) and local surface variables (namely
predictands). It can effectively deal with continuous and discrete variables, as well as nonlinear relations
between predictors and predictands. By integrating ancillary functional modules of missing data
detecting, correlation analysis, model calibration and graphing of cluster trees, the SCADS is capable of
performing rapid development of downscaling scenarios for local weather variables under current and
future climate forcing. An application of SCADS is demonstrated to obtain 10 km daily mean temperature
and monthly precipitation projections for Toronto, Canada in 2070e2099. The contemporary reanalysis
data derived from NARR is used for model calibration (1981e1990) and validation (1991e2000). The
validated cluster trees are then applied for generating future climate projections.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Futureprojections of climate change canbe obtained fromGlobal
Climate Models (GCMs) based on multiple emission scenarios.

However, for assessing the impacts of climate change at a regional
scale, outputs of GCMs cannot be used directly due to the mismatch
in the spatial resolution between GCMs and impacts assessment
models (Hashmi et al., 2009; Willems and Vrac, 2011). Generally,
GCMs have spatial resolutions in the order of hundreds of kilome-
ters, while a much finer resolution (in the range of tens of kilome-
ters, or even less) is required for impact analysis. Downscaling
techniques are therefore developed in recent years to handle the
spatial mismatch as an alternative to improve regional or local es-
timates of variables from GCM outputs (Hessami et al., 2008).

According to reviews of previous studies (Hewitson and Crane,
1996; Wilby and Wigley, 1997; Wilby et al., 1998, 2004; Murphy,
1999; Mearns et al., 2003), downscaling techniques can be classi-
fied into dynamical and statistical. As a typical dynamical down-
scaling approach, Regional Climate Models (RCMs) cannot only
generate precipitation and temperature time series that contain
temporal and spatial correlation consistent with physical mecha-
nisms, but also help identify out-of-sample climate conditions and
mechanisms previously not observed. However, it is difficult for
RCMs to quickly generate a large set of possible outcomes and to
cost-effectively provide high resolution station data. By contrast,
statistical downscaling mainly involves developing quantitative
relationships between large-scale atmospheric variables (or
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predictors) and local surface variables (or predictands), which is
easier to implement with much lower computation requirements
(Wilby et al., 2004). Therefore statistical downscaling approach is
widely used in studies of climate change impacts (Heyen et al.,
1996; Maak and von Storch, 1997; Beckmann and Adri Buishand,
2002; Huth, 2002; Wood et al., 2004; Fowler et al., 2007; Timbal
et al., 2009; Hashmi et al., 2011; Phatak et al., 2011; Mullan et al.,
2012). In general, statistical downscaling methods can be classi-
fied into three categories: weather classification schemes (e.g.
analog method, fuzzy classification, Monte Carlo methods),
regression models (e.g. linear regression, stochastic models, spell
length methods, mixture modeling) and weather generators (e.g.
neural networks, canonical correlation analysis). Correspondingly,
a number of downscaling tools were recently developed to facilitate
climate change impact studies. For example, Wilby et al. (2002)
developed a regression-based downscaling tool known as SDSM;
Hessami et al. (2008) proposed an automated statistical down-
scaling (ASD) tool based on SDSM; Semenov and Barrow (1997)
developed a weather generator model known as the Long Ashton
Research StationWeather Generator (LARS-WG); Willems and Vrac
(2011) developed an artificial intelligence data driven model using
the Gene Expression Programming (GEP) to create symbolic
downscaling functions. Among these downscaling approaches,
most of them assume that each predictand of interest is a function
of predictors. This is especially true for regression-based models.
However, there is no guarantee that such a functional relationship
must exist between predictand and predictors. Although we can
establish a functional relationship constrainedly by reducing the
number of variables or introducing more assumptions, it might not
be able to improve significantly the projection quality compared to
coarser outputs of GCMs. To this end, a stepwise-cluster-analysis-
based downscaling tool (SCADS) will be proposed in this study,
which expresses the complex interactions between predictors and
predictands as a cluster tree, without requiring assumptions of
functional relationships.

The proposed downscaling tool is inspired by a stepwise cluster
analysis (SCA) method which was firstly introduced by Huang
(1992). The SCA has been widely applied for environmental studies
over the past years. For example, Huang et al. (2006) developed a
forecasting system for supporting remediation design and process
control based on SCA; Qin et al. (2007) applied SCA for establishing a
linkage between remediation actions and system responses. The
main purpose of this study is to develop a downscaling tool based on
SCA and to test its capability of obtaining finer scenarios from coarser
outputs of GCMs or RCMs. The following sections start with an
overview of the SCAmethod on its basic principle, modeling process,
and software implementation. An illustrative example is then pre-
sented to obtain 10 km high-resolution climate projections of Tor-
onto, Canada in 2070e2099 by downscaling a 25 km scenario
outputted from the PRECIS (Providing REgional Climates for Impacts
Studies) model e a regional climate modeling system developed by
the Met Office Hadley Centre. The last section states the main con-
clusions and recommendations in terms of SCADS application aswell
as its limitation.

2. Methodology

2.1. Basic principle of SCA

The fundamental algorithm of SCA is based on the theory of
multivariate analysis of variance (Morrison, 1967; Cooley and
Lohnes, 1971; Overall and Klett, 1972). In SCA, sample sets of
dependent variables will be cut or merged into new sets (i.e. chil-
dren clusters) based on given criteria, and the values of indepen-
dent variables will be used as references to determine which new

set a sample in the original set (i.e. parent cluster) will enter (Huang
et al., 2006). The construction of a SCA cluster tree requiresmultiple
cutting and merging operations, such a process is actually to divide
the original set of dependent variables into many irrelevant subsets
according to specific criteria which will be described later in this
section. The generated cluster tree can express the complex re-
lations between predictors and predictands, it will be used to
predict future values of predictands based cutting or merging op-
erations are based on theWilks’L statistic (Wilks, 1962), defined as
L ¼ jEj/jED Hj, where E and H are the within- and between-group
sums of squares and cross products matrices, respectively. Let two
sets of dependent variables e and f contain ne and nf samples,
denoted as the following vectors: ei ¼ (e1i, e2i,., edi)0, i ¼ 1, 2, 3,.,
ne, and fj ¼ (f1j, f2j, f3j, ., fdj)0, j ¼ 1, 2, 3, ., nf, where d is the
dimension of e and f. Then the H and E can be given by:

E ¼
Xne

i¼1

ðei � eÞ0ðei � eÞ þ
Xnf

j¼1

�
f j � f

�0�
f j � f

�
(1)

H ¼ nenf
ne þ nf

�
e� f

�0�
e� f

�
(2)

where e is the sample mean of set e, f is the sample mean of set f,
respectively. They can be defined as follows:

e ¼ 1
ne

Xne

i¼1

ei (3)

f ¼ 1
nf

Xnf

j¼1

f i (4)

For example, let

e ¼
�
e1
e2

�
¼

�
36 9:98
48 12:96

�
; f ¼

2
4 f1
f2
f3

3
5 ¼

2
450 9:84
31 8:84
29 8:9

3
5

where ne ¼ 2, nf ¼ 3, d ¼ 2, e ¼ (42, 11.47), f ¼ (36.67, 9.19). Ac-
cording to Equations (1) and (2), E and H can be calculated as
follows:

E ¼
�
340:67 30:75
30:75 5:07

�
; H ¼

�
34:13 14:57
14:57 6:22

�
:

According to Rao’s F-approximation (Rao, 1952), the Wilk’s L

statistic under the above two groups of samples can be correlated
to a F-variant as follows:

F
�
d; neþnf � d� 1

�
¼ 1�L

L
$
ne þ nf � d� 1

d
(5)

As described inWilk’s likehood-ratio criterion (Wilks, 1962), the
smaller the L value, the larger the difference between the sample
means of sets e and f. Since the L value is directly related to the F
statistics, we can compare the sample means of the two data sets
for significant differences through F-test (Huang et al., 2006; Qin
et al., 2008). The null hypothesis would be H0: me ¼ mf versus the
alternative hypothesis H1: me s mf, where me and mf are population
means of sets e and f. Let the significance level be a. The criterion
for cutting would be: Fcal � Fa and H0 is false, which implies that
differences of means between two sets are significant; whereas,
Fcal < Fa and H0 is true would be the merging criterion which in-
dicates these two sets have no significant variations.
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