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a b s t r a c t

In this study, the determination of control actions for timed continuous Petri nets is investigated by
the characterisation of attractive regions in marking space. In particular, attraction in finite time, which
is important for practical issues, is considered. Based on the characterisation of attractive regions, the
domain of admissible piecewise constant control actions is computed, and sufficient conditions to verify
the feasibility of the control objectives are proposed. As a consequence, an iterative procedure is presented
to compute piecewise constant control actions that correspond to local minimum time control for timed
continuous Petri nets.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Timed continuous Petri nets (contPNs) are used to eliminate
the combinatory explosion that occurs by applying enumeration
techniques with discrete event systems (DESs) and to benefit
from the main advances in continuous systems control theory
(David & Alla, 1992; Júlvez, Recalde, & Silva, 2005; Silva & Re-
calde, 2002; Vazquez & Silva, 2011). Conditions for controllabil-
ity have been investigated (Jimenez, Júlvez, Recalde, & Silva, 2005;
Vazquez, Ramirez, Recalde, & Silva, 2008). Stationarymarkings and
flowshave also been characterised (Mahulea, Ramírez-Treviño, Re-
calde, & Silva, 2008b). Then, linear control designs (Apaydin-Ozkan,
Júlvez, Mahulea, & Silva, 2011; Lefebvre, 1999; Lefebvre, Delherm,
Leclercq, & Druaux, 2007) have been considered for contPNs. Opti-
mal controls have also been investigated. In particular, affine con-
trol laws (Vazquez & Silva, 2009), model predictive control (Giua
et al., 2006; Mahulea, Giua, Recalde, Seatzu, & Silva, 2008a), con-
strained feedback control (Kara, Ahmane, Loiseau, & Djennoune,
2009) and piecewise-linear marking trajectories in minimum time
(Apaydin-Ozkan et al., 2011) have been designed.
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In this study, a geometric approach is proposed to verify the
feasibility of piecewise constant control actions (PCCAs) for the
discrete time approximation of contPNs with some controllable
transitions and some uncontrollable ones. Control actions are
maintained constant in specific regions of the marking space,
namely r-regions that depend on the contPN structure (Lefebvre &
Leclercq, 2012). Feasibility concerns the determination of the do-
main of suitable control actions for a given control objective. Feasi-
bility is required to compute admissible trajectories, attracted near
a reference marking. The reachability of the neighbourhood of a
desired marking in the marking space and the stability within this
neighbourhood are both concerned. These properties are studied in
discrete timewith a single formulation, namely (τ , τ ′)-attractivity.
The (τ , τ ′)-attractive regions are computed based on linear matrix
inequalities (LMIs). As long as PCCAs are considered, manufactur-
ing systems (Cassandras, 1993) are concerned at first. The moti-
vation to use constant or piecewise constant actions is to prevent
the stress of actuators. An algorithm that computes localminimum
time trajectories with PCCAs is then proposed. It drives the mark-
ing from an initial value to the neighbourhood of a target value
according to temporal specifications: feasible trajectories with re-
spect to (wrt) a given sequence of r-regions are computed. The pro-
posed approach is related to the computation of invariant sets for
nonlinear systems by means of LMIs (Benlaoukli, Hovd, Olaru, &
Boucher, 2009; Benlaoukli & Olaru, 2007; Blanchini, 1999). In this
paper, the method is extended to characterise attractive regions
and conditions are relaxed by taking advantages of the piecewise
linear structure of contPNs. Our contribution is compared with
model predictive control (MPC) for contPNs (Bemporad, Morari,
Dua, & Pistikopoulos, 2002; Giua et al., 2006).
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This paper is organised into five sections. Section 2 introduces
contPNs with PCCAs. Section 3 discusses the approximation of
attractive regions for contPNs. Section 4 concerns control design
in finite time with PCCAs. Section 5 presents some conclusions.

2. ConPNs with constant control actions

2.1. Controlled timed continuous Petri nets

ContPNs under infinite server semantics have been developed
to provide continuous approximations of DESs (David & Alla, 1992;
Silva & Recalde, 2002). The marking of each place is a continu-
ous non-negative real-valued function of time, and M(t,MI) ∈

(R+)n, t ≥ 0 (R+ is the set of non-negative real numbers) is the
continuous marking trajectory whose initial marking is MI at in-
stant t = 0. P = {Pi} is a set of n places and T = {Tj} is a set of q
transitions, WPO ∈ (Z+)n×q is the post-incidence matrix (Z+ is the
set of non-negative integer numbers), WPR ∈ (Z+)n×q is the pre-
incidence one and W = WPO − WPR is the incidence matrix. The
marking variation is given by dM (t,MI)/dt = W .X(t,MI). The
vector X(t,MI) ∈ (R+)q with X(t,MI) = (xj(t,MI)) is the firing
speed (i.e. flow) vector at time t in the free regime, which continu-
ously depends on the marking of the places. The flow through the
transition Tj is defined by (1):

xj(t,MI) = xmax j.enabj(M(t,MI)) (1)

with enabj(M) = min{mk/w
PR

kj for all Pk ∈ °Tj}, °Tj stands for the
set of Tj upstream places, xmax j, j = 1, . . . , q are the transition fir-
ing rates, which are constant parameters and Xmax = diag(xmax j).

Control actions may be introduced according to a reduction in
the flow through the transitions (Jimenez et al., 2005). Such control
actions can be interpreted as slowing down the server activities in
the considered systems. Transitions in which a control action can
be applied are called controllable, and Tc = {T1, . . . , Tqc} is the set
of qc controllable transitions. Similarly, Tnc = {Tqc+1, . . . , Tq} is the
set of q−qc uncontrollable transitions. Let us define Qc ∈ (Z+)qc×q

and Qnc ∈ (Z+)(q−qc)×q according to (2):

Qc = (Iqc |0qc×(q−qc))

Qnc = (0(q−qc)×qc |Iq−qc). (2)

Iqc is the identity matrix of size qc × qc , and 0qc×(q−qc) is the null
matrix of size qc × (q − qc). The control actions are represented
by the control vector U(t) ∈ (R+)q with U(t) = (uj(t)). The flow
through transition Tj is given by (3):

xc j(t,MI) = xj(t,MI) − uj(t) = xmax j.enabj(M(t,MI)) − uj(t) (3)

with 0 ≤ uj(t) ≤ xmax j.enabj(M(t,MI)) if Tj ∈ Tc and uj(t) = 0 if
Tj ∈ Tnc . In other words, Xc(t,MI) = X(t,MI)−U(t). The marking
variation of a controlled contPN is given by dM(t,MI)/dt =

W .Xc(t,MI) or by (4):

dM(t,MI)/dt = W .(X(t,MI) − U(t)) (4)

with 0 ≤ Qc .U(t) ≤ Qc .X(t,MI) and Qnc .U(t) = 0. Control actions
{U(t), t ≥ 0} that satisfy the preceding conditions for a given
marking trajectory are named admissible Bounded Input Controls.
The set BIC(Tc ,MI) of admissible control actions {U(t), t ≥ 0} for
initial markingMI is defined as follows:

BIC(Tc ,MI) = {{U(t), t ≥ 0} such that 0 ≤ Qc .U(t)
≤ Qc .X(t,MI) and Qnc .U(t) = 0, for all t ≥ 0}. (5)

2.2. Regions for contPNs

Below, a ‘‘region’’ denotes any polyhedral set in marking or
control space. Such a set is characterised by the LMI: H.Z ≤ h,

where Z stands either forM or U and the couple (H , h) defines the
perimeter of the polytope.

Switches occur in contPNs according to the function ‘‘min(.)’’ in
the expression of the enabling degree (1). Let us denote the critical
place(s) for transition Tj at time t as the place(s) Pi such that i
correspond(s) to the value(s) of the index k for which the quantity
of tokensmk(t,MI)/w

PR
kj is minimal for all Pk ∈ °Tj.

Let us define R(contPN,M I) as the untimed reachable set of
a marked contPN. R(contPN,M I) is partitioned into K reachable
regions Ak (r-regions) with K ≤ Π{|°Tj|, j = 1, . . . , q} :

R(contPN,M I) = A1 ∪ · · · ∪ AK. The r-regions depend on the
critical places of the transitions, and each r-region Ak is charac-
terised by a constraint matrix Ak ∈ (R+)q×n with Ak = (akij), where
akji = 1/wPR

ij if Pi is the critical place of transition Tj anywhere
in r-region Ak and akji = 0 otherwise. In the interior of any r-
region Ak i.e. int(Ak)) each transition has a unique critical place.
At the borders (i.e. Ak \ int(Ak)), a transitionmay have several crit-
ical places. As a consequence, each r-region Ak is characterised by
an LMI: Hk.M ≤ hk (Lefebvre, 2011).

2.3. Piecewise constant control actions for discrete time approxima-
tion of contPNs

In each r-region Ak, the firing speed vector can be written as
Xc(t,MI) = Xmax.Ak.M(t,MI) − U(t), and the marking variation
satisfies dM(t,MI)/dt = W .(Xmax.Ak.M(t,MI) − U(t)) with
{U(t), t ≥ 0} ∈ BIC(Tc ,MI). If the control actions are constant
in r-region Ak (i.e., U(t) = Uk if M(t,MI) ∈ int(Ak)), PCCAs are
considered and contPNs are piecewise-affine hybrid systems given
by (6):

∀M(t,MI) ∈ int(Ak),

dM(t,MI)/dt = W .Xmax.Ak.M(t,MI) − W .Uk (6)

where 0 ≤ Qc .Uk ≤ Qc .Xmax.Ak.M(t,MI) and Qnc .Uk = 0, for all
t ≥ 0.

Let us notice that several values of U(t) may be selected if
M(t,MI) ∈ Ak \ int(Ak) because the r-region borders belong to
two or more r-regions. In order to avoid ambiguity at the borders,
the definition of PCCAs is extended as:U(t) = Uk where k = min{h
such thatM(t,MI) ∈ Ah).

For numerical issues, the first-order discrete time approxima-
tion (7) of the continuous trajectories of controlled contPNswill be
used:

∀MD(t,MI) ∈ Ak,

MD(t + 1,M I) = ADk.MD(t,MI) − W .∆t.U(t) (7)

t stands for discrete time in (7), ∆t is the sampling period and
ADk = W .Xmax.Ak.∆t+In. A constant control vectorUk that satisfies
conditions (6) for a given discrete timemarking trajectory included
in Ak is named an admissible Constant Bounded Input Control, and
the sets CBIC(Ak, Tc , MI ) of admissible constant control vectors for
initial markingMI ∈ Ak are defined as:

CBIC(Ak, Tc ,MI) = {Uk ∈ (R+)q such that for all t ≥ 0

and MD(t,MI) ∈ Ak : (i) 0 ≤ Qc .Uk

≤ Qc .Xmax.Ak.MD(t,MI); (ii) Qnc .Uk = 0}. (8)

If MD(τ ,MI) ∈ Ak, for τ = 0, . . . , t − 1, and Uk ∈ CBIC(Ak, Tc ,
MI ) then (7) leads to (9) from an iterative calculation of MD(t,MI)
starting from initial markingMI :

MD (t,MI) = (ADk)
t .MI − Σk (t) .Uk (9)
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