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a b s t r a c t

The subject of this paper is identification of discrete time nonlinear dynamical systems when the system
dynamics are defined by a discontinuous nonlinear function with the location of the discontinuity
unknown. By representing the nonlinear function using both a parametric term to capture the continuous
part and a non-parametric term to capture the discontinuous part, we present an identification algorithm
along with conditions for recovery of the true nonlinearity.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a large number of system identification schemes for non-
linear systems, the problem reduces to the estimation of a set of
nonlinear functions (Hsu, Poolla, & Vincent, 2008; Novara, Vincent,
Hsu, Milanese, & Poolla, 2011). A very general model structure,
known in the literature as Linear Fractional Transformation (LFT),
is of the form

y = Lyuu + Lyee + Lyww

z = Lzuu + Lzee + Lzww (1)

wk = F (zk)

where the measured input and output are u and y respectively,
e is an unmeasured input, F is a static nonlinear function to be
identified and L∗∗ represents a known linear time invariant (LTI)
dynamic system that changes depending on the application. The
dimensions of L and F are assumed to be compatible with these
signals. Nonlinear Auto-regressive with eXogenous input (NARX)
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and Nonlinear Auto-regressive and Moving Average with eXoge-
nous input (NARMAX) are examples of model structures that can
be utilized in such an identification scheme. For example, to rep-
resent the NARX model structure

yk = F (yk−1, yk−2, uk−1, uk−2)+ ek,

we may choose

Lyu = 0, Lye = 1, Lyw = 1 Lze = 0,

Lzu =

0 0 q−1 q−2T ,

Lzw =

q−1 q−2 0 0

T
,

where q−1 is the unit delay operator. Similarly, NARMAX and other
model structures can be represented in this way. Note that by re-
stricting part ofF to be a linear function, block structured systems
such as Hammerstein andWiener systems can also be represented.
Other systems may have a physical structure that suggests a par-
ticular choice for L∗∗. Examples such as roll to roll physical va-
por deposition and an automobile suspension systemare discussed
in Vincent, Novara, Hsu, and Poolla (2010). Other motivating ex-
amples are also discussed in Vincent et al. (2010) and include thin
film deposition usingmulti-zone co-evaporation, thermal network
models for building control, and electrical circuits with nonlinear
components. Another example thatwill be used to illustrate the re-
sults of this paper is a drill-string, which will be described in more
detail below.

In the LFT representation (1), the LTI systems L∗∗ are assumed
known, while the static nonlinear function F has to be identified
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from the measured input and output signals. The identification of
the unknown function has been the subject of many papers, both
for specific model structures (see e.g. Sjöberg et al. (1995) and
Nowak (2002)) and the generalized structure of (1) (see Hsu et al.
(2008) andNovara et al. (2011)). However, themajority ofwork has
focused on the case when either F is smooth, or is represented by
a (small) set of known basis functions, with notable exceptions in
the case ofWiener andHammerstein block structures (Chen, 2006;
Vörös, 1997, 2001).

The subject of this paper will be the identification of F when
this function is non-smooth over a part of its domain, but the lo-
cations of the discontinuities are unknown a-priori. The approach
will be a mixed parametric/non-parametric method, in that F will
be represented as

F (zk) =

N
i=1

θiφ
[i](zk)+ η(zk), (2)

where φ[i]
: Rnz → Rnw are known (smooth) basis functions, θi are

parameters, and η : Rnz → Rnw is a discontinuous function to be
identified. Note that η may be characterized by multiple disconti-
nuities. The system identification problem is to select parameters
θk and function η. The intent is for the parametric basis to represent
the smooth part of the function F , while ηwill represent the non-
smooth part. The identification approach will be to represent η us-
ing a complete, possibly non-smooth basis. This estimate is called
non-parametric because the number of basis elements will be the
same as the number of values of η to be estimated. Note that, in
general, this is an over-parameterization of F (sampled at z). Thus,
it is necessary to apply additional a-priori assumptions about η.
However, smoothness assumptions are not useful, as it is expected
that η(z) is non-smooth. Instead, it is assumed that the true non-
linear function η can be represented with a small number of basis
elements, although the exact elements are unknown. By applying a
regularization term that is the sum of the absolute values of the co-
efficients xk, i.e. ∥x∥1, we will be able to show that the true nonlin-
ear function F can be recovered with an error that is proportional
to the size of the signal e.

This approach of signal recovery using an over-parameterized
basis is closely related to basis-pursuit for denoising (Chen,
Donoho, & Saunders, 2001) and compressive sensing (Candès, El-
dar, Needell, & Randall, 2011; Candès, Romberg, & Tao, 2006). There
is also a close connection to regression methods that utilize total
variation regularization terms (Chan & Tai, 2003; Park, Park, Ahn,
& Lee, 2007) in the case that η is represented using the gradient
basis that is discussed below. However, there are unique aspects
of the identification problem that motivate an analysis specific to
this case. In particular, the fact that the basis for η depends on the
signal zk provides a new twist, and, indeed, recovery depends on
the specific realization of zk. The conditions for recovery will pro-
vide an implicit persistence of excitation condition that does not
occur in standard basis pursuit or compressive sensing problems.
Development of the recovery conditions and the study of their im-
plications on the choice of basis for η are the primary contributions
of this paper.

A preliminary version of this paper was published in Vincent
and Novara (2013).

1.1. Notation

Avariablewithout subscript (i.e. z)will represent a signal, while
a variable with subscript (i.e. zk) is the value of the signal at time
k. Throughout this paper, we will assume an experiment length of
L. Signal u has dimension nu and similarly for e, w, y, and z. Thus,
for example, u represents the signal u = {uk}

L
k=1 where uk ∈ Rnu .

The ith component of a signal at time k will be denoted by [yk]i,

that is, this is the ith output at time k. When applied to a causal lin-
ear operator, such as in the expression Lyww, the result is another
signal of time length L, which is the truncated output of Lyw with
input w with prior zeros appended. In this case, by choosing a ba-
sis for w and y, Lyw can be represented as an RnyL×nwL matrix. The
notation w = F (z) indicates that w is the result of applying the
nonlinearity pointwise in time to the signal z. So, for example, if
F : Rnz → Rnw is a nonlinear mapping,w then is a length L signal
withwk = F (zk).

When explicit expressions are necessary, we will use a channel
by channel representation for a signal. That is, when e.g. w is
written as a vector, it becomes

w =

[w1]1 · · · [wL]1 [w1]2 · · · [wL]nw

′
.

Given a matrixM the notationMΛ denotes the matrix made up
of the columns of M in the index set Λ. Similarly, xΛ is the vector
made up of the elements of x in the index setΛ. The vector norms
∥x∥2

.
=

√
x′x and ∥x∥1

.
=


i |[x]i| are standard. Given a matrixM ,
the operator norm ∥M∥p,q is defined to be

∥M∥p,q
.
= sup

x≠0

∥Mx∥q

∥x∥p
.

2. Mixed parametric/non-parametric identification

2.1. Identification algorithm

Our identification approach will be either via a single optimiza-
tion or iterative, depending on the following property of themodel
structure.

Definition 1. The signal z is measurable if there exists an LTI
system Gm such that
Lze Lzw


= Gm


Lye Lyw


.

When z is measurable, z can be determined from knowledge of y, u
andL alone, which implies that it is available for the identification
algorithm given below. In the case that z is not measurable, an
iterative approach can be taken, where an initial guess for z is
made, the identification performed, and then using the known
L and estimated F , a new guess for z is obtained. See Novara
et al. (2011) for the application of such an iterative approach to a
problem of practical interest, related to the identification of semi-
active suspension systems.

The proposed mixed parametric/non-parametric identification
algorithm can now be stated. We will assume that the system Lye
is invertible, which is standard when this system is used to model
the spectrum of a stationary random process. As discussed in the
introduction, the nonlinear functionF is represented using expan-
sion (2). It is assumed that φ[i] contains the constant function. The
nonlinearity η(z) will be represented using a complete basis that
spans the space orthogonal to constant functions, i.e.

η(zk) =

nw×(L−1)
i=1

xiψ [i](zk),

where ψ [i] sampled at zk are basis functions satisfying the struc-
tural assumptions on F and xi are parameters. By structural
assumptions, wemean that the appropriate input/output relation-
ships are maintained, so that if a basis element is used to repre-
sent a particular output of F , it only depends on the elements of
zk appropriate for that output. Note that this basis function expan-
sion allows us to represent functionswithmultiple discontinuities.
Specific examples of bases suitable for the representation of non-
smooth functions will be provided in Section 4.
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