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a b s t r a c t

Through several decades of development, global sensitivity analysis has been developed as a very useful
guide tool for assessing scientific models and has gained pronounced attention in environmental science.
However, standard global sensitivity analysis aims at measuring the contribution of input variables to
model output uncertainty on average by investigating their full distribution ranges, but does not
investigate the contribution of specific ranges. To deal with this problem, researchers have developed
several regional sensitivity analysis techniques such as the contribution to sample mean and variance
(CSM and CSV) plots. In this paper, a moment-independent regional sensitivity analysis technique called
contribution to delta indices (CDI) plot is developed for assessing the effect of a specific range of an
individual input to the uncertainty of model output. The CDI plot can be obtained with the same set of
samples used for computing the CSM and CSV. Compared with the CSM and CSV, the CDI plot uses the
probability density function shift of model output to describe the uncertainty instead of the mean and
variance, thus it is moment-independent. An analytical linear model, the Ishigami function and an
environmental model are employed to test the proposed RSA technique.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Global sensitivity analysis (GSA) aims at measuring the contri-
bution of input uncertainty to the model output uncertainty by
exploring the whole distribution ranges of model inputs (Saltelli,
2002). It is a very useful tool for developing scientific models,
thus has been widely used in environmental science (e.g., Draper
et al., 1999; Pastres et al., 1999; Saltelli and Tarantola, 2002;
Vezzaro and Mikkelsen, 2012).

The last few decades have witnessed a rapid development in
GSA techniques (Sobol, 1993; Homma and Saltelli, 1996; Chun et al.,
2000; Borgonovo, 2007; Sobol and Kucherenko, 2009; Liu and
Homma, 2010; Wei et al., 2012). Among all the available GSA
techniques, the variance-based one developed by Sobol (1993),
Homma and Saltelli (1996) and the moment-independent one
proposed by Borgonovo (2007) are the most widely used (e.g.,
Estrada and Diaz, 2010; Borgonovo et al., 2012; Dimov et al., 2012;
Zhan et al., 2013). The variance-based GSA indices are “global,
quantitative and model free” (Borgonovo, 2006), and various smart
computational methods are available for quantitative analysis, thus
have gained the most attention of analysts and practitioners.

However, as has been pointed out by Borgonovo (2006), the
premise of this techniquedthat the variance is sufficient to
describe the variability of model outputdis not always true.
Comparably, the moment-independent indices (also called delta
indices) are not only “global, quantitative and model free”, but also
make no assumption on the independence among the input vari-
ables, thus have drawn growing attention in the past few years.

Standard GSA techniques (including the variance-based one and
the moment-independent one) quantify the contributions of the
input variables to the uncertainty of model output by exploring
their whole distribution ranges, but do not tell which region of the
distribution of an input variable (lower tail, central region or upper
tail) contributes the most to the uncertainty of model output. In
order to measure the regional importance of input variables,
Bolado-Lavin et al. (2009) and Tarantola et al. (2012) proposed two
regional sensitivity analysis (RSA) techniques called contribution to
sample mean and variance (CSM and CSV, respectively) plots. These
two techniques are able to measure the contribution of a specific
region of an input variable to the mean and variance of model
output. However, like the limit of the variance-based GSA tech-
nique, since both themean and variance are not always sufficient to
characterize the uncertainty of model output, the applications of
CSM and CSV are limited.

In this paper, we propose a moment-independent RSA tech-
nique called contribution to delta indices (CDI) plot. After the
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important input variables have been observed by using the delta
indices, the CDI plots can be used for measuring the contributions
of specific ranges of these important input variables to the uncer-
tainty of model. The CDI plot has two definite advantages. First, it
doesn’t make any assumptions on model output moment, and use
the shift of probability density function (PDF) to characterize the
uncertainty of model output, thus it is moment-independent.
Second, the CDI plots for all input variables can be computed by
using the same set of samples as those for computing the delta
indices, thus no extra computational cost is introduced.

2. Materials and methods

2.1. Moment-independent regional sensitivity analysis

2.1.1. Review of the delta indices
Consider a computational model represented by an inputeoutput function

Y ¼ g(X), where Y is the model output with PDF fY(y), and X ¼ (X1,X2,.,Xn) denotes
the n-dimensional vector of random input variables with joint PDF fx(x). If the input

variables are independent, then fX ðxÞ ¼
Yn
i¼1

fiðxiÞ, where fi(xi) is the marginal PDF of

the input variable Xi. In this paper, only the continuous random input variables are
considered. Thus the support of each input is a range.

To investigate the effect of the uncertainty of each input variable Xi on the PDF of
model output, Borgonovo (2007) proposed the following delta index for Xi,

di ¼ 1
2
EXi

ðsðXiÞÞ ¼ 1
2

Z
sðXiÞfXi

ðxiÞdxi (1)

where s(Xi) is the area difference between the unconditional PDF fY(y) and the
conditional one fYjXi

ðyÞ, i.e.,

s Xið Þ ¼
ZþN

�N

fY yð Þ � fY jXi
yð Þ

��� ���dy (2)

The delta index for a set of input variables, say R ¼ ðxi1 ; xi2 ;.; xir Þ, is defined as

di1 ;i2 ;.;ir ¼1
2
ERðsðRÞÞ ¼ 1

2

Z
fXi1

;Xi2
;.;Xir

�
xi1 ; xi2 ;.; xir

�
�
�Z ���fY ðyÞ � fYjXi1

;Xi2
;.;Xir

ðyÞ
���dy�dxi1 dxi2.dxir

(3)

where fYjXi1
;Xi2

;.;Xir
ðyÞ is the PDF of model output conditioned on R, and s(R) is the

area difference between fY(y) and fY jXi1
;Xi2

;.;Xir
ðyÞ.

Note that fY;Xi
ðy; xiÞ ¼ fXi

ðxiÞfYjXi
ðyÞ, then Eq. (1) can be rewritten as (Plischke

et al., 2013; Wei et al., 2013):

di ¼ 1
2

Z Z ��fY ðyÞfXi
ðxiÞ � fY ;Xi

ðy; xiÞ
��dydxi (4)

Further, Eq. (4) can be expressed in terms of copula. Let Fi(xi) and FY(y) denote
themarginal CDF of Xi and Y, respectively, and FY,xi(y,xi) denote the joint CDF of Xi and
Yi. By Sklar’s theory (Nelsen, 2006; Genest and Favre, 2007), if both Fi(xi) and FY(y)
are continuous, then there exists a unique copula C such that

FY;Xi
ðy; xiÞ ¼ CðFY ðyÞ; FiðxiÞÞ (5)

If Fi(xi) and FY(y) are discontinuous marginal CDFs, then C is uniquely deter-
mined in the space RanFY ðyÞ � RanFXi

ðxiÞ, where RanFY(y) and RanFXi
ðxiÞ are the

range of FY(y) and Fi(xi), respectively, and � is the Cartesian product.
Let u ¼ FY(y) and vi ¼ Fi(xi). Both u and vi are uniformly distributed in [0,1]. Then

the copula C(u,vi) can be regarded as a joint CDF with uniform marginal distribution
in [0,1]. The copula density c(u,vi) is given by

cðu; viÞ ¼ v2Cðu; viÞ
vuvvi

(6)

Then Eq. (4) can be expressed by (see Appendix for proof)

di ¼ 1
2

Z Z
I2

jcðu; viÞ � 1jdudvi (7)

Eq. (7) indicates that di equals the half of the volume difference between the
copula density z ¼ c(u,vi) and the plane z ¼ 1 in the space [0,1]2.

By Eq. (7), as copula density c(u,vi) has been estimated to be bcðu; viÞ, di can be
estimated by numerically integrating the bivariate function jbcðu; viÞ � 1j=2.

2.1.2. The contribution to delta indices plot
It is noticed that the delta index for Xi is defined by integrating s(Xi) from �N

to þN. Similar to the definitions of CSM and CSV, by integrating s(Xi) from �N to
F�1
i ðqÞ with q˛½0;1�, the contribution of the distribution range ð�N; F�1

i ðqÞ� of Xi to
the model output uncertainty can be investigated. Therefore, the CDI plot for the
input variable Xi is defined as:

CDIi qð Þ ¼ 1
2di

ZFi�1 qð Þ

�N

ZþN

�N

������fY yð Þ � fY jXi
yð Þ
������dy

0
@

1
Afi xið Þdxi (8)

CDIi(q) is plotted on the space [0,1]2. After the important input variables are
observed by the delta indices di, the CDI plot can be used to investigate the effect of
specific ranges of those important input variables on the uncertaintyofmodel output.

By the copula density, we can rewrite Eq. (8) as

CDIiðqÞ ¼ 1
2di

Zq
0

Z1
0

jcðu; viÞ � 1jdudvi (9)

If the copula density c(u,vi) has been properly identified by using a set of sam-
ples, then CDIi(q) can be estimated using the same set of samples.

Compared with the mean and variance, the density shift is more proper for
characterizing the uncertainty of model output since it contains the complete in-
formation of each moment. Similar to CSV, the following two properties are true for
CDI: a) CDIi(0) ¼ 0, CDIi(1) ¼ 1; b) CDI is strictly non-decreasing function of q.

Given a set of N samples ðxðjÞ1 ; xðjÞ2 ;.; xðjÞn Þ (j ¼ 1,2,.,N) and the corresponding
model output value y(j), the following procedure can be used for computing CDIi(q):

Step 1: Convert the sample pair ðyðjÞ; xðjÞi Þ to ðuðjÞ; vðjÞi Þ (j ¼ 1,2,.,N) by

uðjÞ ¼ 1
N

XN
k¼1

I
�
yðkÞ � yðjÞ

�
; v

ðjÞ
i ¼ Fi

�
xðjÞi

�
(10)

where Ið,Þ is the indictor function, i.e., I ¼ 1 if y(k) � y(j), else I ¼ 0.

Step 2: Estimate the copula density c(u,vi) by the maximum penalized likelihood
estimation (MPLE) procedure (Qu and Yin, 2012) or the kernel density estima-
tion (KDE) procedure (Botev et al., 2010) or other density estimation methods.
Denote the estimate as bcðu; viÞ.
Step 3: Compute the delta indices bdi by numerically integrating the function
jbcðu; viÞ � 1j=2 over the rectangular region [0,1]�[0,1].
Step 4: Compute CDIi(q) by numerically integrating the function jbcðu; viÞ � 1j=2bdi
over the rectangular region [0,1]�[0,q], where 0 < q < 1.

2.1.3. Interpretation of CDI plot
CDI is a useful tool for investigating the contribution of specific distribution

ranges of input variables to the model output uncertainty, and CDI can be inter-
preted in an analogous way to the CSM and CSV. If the CDI plot is close to the di-
agonal line, the contribution of the distribution range of the input variable to the
model output is uniform. If the plot is convex downward, then this distribution
range contributes less than the average level to the model output uncertainty.
Otherwise, if the plot is convex upward, then the distribution range contributes
more than the average level.

Next, we develop the relationship between the distribution range reduction of
input variable and the mean shift of model output PDF. Suppose we have reduced
the distribution range of the input Xi from [�N,þN] to ½F�1

i ðsÞ; F�1
i ðtÞ�, then the PDF

of the input Xi can be updated as

f *i xið Þ ¼ fi xið Þ
ZFi�1 tð Þ

Fi
�1 sð Þ

fi xið Þdxi

(11)

and the delta index for Xi with the updated PDF f *i ðxiÞ is given by

d*½s;t�i ¼ 1
2

ZF�1
i ðtÞ

F�1
i ðsÞ

0
B@ ZþN

�N

���fY ðyÞ � fY jXi
ðyÞ

���dy
1
CAf *i ðxiÞdxi

¼ 1

2
ZF�1
i ðtÞ

F�1
i ðsÞ

fiðxiÞdxi

ZF�1
i ðtÞ

F�1
i ðsÞ

0
B@ ZþN

�N

fY ðyÞ � fYjXi
ðyÞdy

1
CAf *i ðxiÞdxi (12)

Eq. (12) defines the delta index for Xi in the reduced distribution range
½F�1
i ðsÞ; F�1

i ðtÞ�, but with the unchanged PDF fY(y) of model output. By the copula
density, Eq. (12) can be written as

P. Wei et al. / Environmental Modelling & Software 47 (2013) 55e6356



Download English Version:

https://daneshyari.com/en/article/6964257

Download Persian Version:

https://daneshyari.com/article/6964257

Daneshyari.com

https://daneshyari.com/en/article/6964257
https://daneshyari.com/article/6964257
https://daneshyari.com

