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a b s t r a c t

This paper considers motion/force tracking control of a class of Lagrange mechanical systems with clas-
sical nonholonomic constraints. A tracking control method is proposed by combining cascaded methods
and backstepping techniques. The main results of this paper include three parts: (1) error dynamics be-
tween the kinematic system and the desired paths are transformed into a cascaded system consisting of
two subsystems and an interconnection function; (2) under the framework of cascaded methods, virtual
controllers for the subsystems are designed to stabilize the error dynamics; (3) the tracking controller is
designed for the overall mechanical systems using backstepping techniques.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Nonholonomic systems, as an important class of mechanical
systems, abound in robotics (De Luca, Oriolo, & Samson, 1998;Mur-
ray & Shankara, 1993; Samson, 1995). In the last three decades,
studies on nonholonomic systems have attracted much attention
from the control community (Fierro & Lewis, 1997; McClamroch
& Wang, 1988; Panagou & Kyriakopoulos, 2013; Zhang, Liu, Luo,
& Wang, 2013), because no time-invariant smooth state feedback
control law can stabilize nonholonomic systems with restricted
mobility to a desired configuration (Kolmanovsky & McClamroch,
1995; Li, Ge, Adams, & Wijesoma, 2008a). Thus many publications
have focused on the stabilization problem (Ge & Lewis, 2006; Li
et al., 2008a).
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In practice, tracking a reference trajectory, as a more interest-
ing issue, has received relatively less attention in the literature.
According to the nonholonomic systems presenting at a kinematic
or dynamic level (Ge, Wang, Lee, & Zhou, 2001; Li et al., 2008a),
the tracking problem is usually classified into kinematic tracking
or dynamic tracking problems. Thus the kinematic and dynamic
tracking problems yield kinematic control such as driving speed
and physical controls such as driving torques, respectively (Fukao,
Nakagawa, & Adachi, 2000). Like the stabilization case, most of
the work on the tracking problem in the literature focuses on
the kinematic level (Oya, Su, & Katoh, 2003). Recognizing the im-
portance of addressing the tracking control problem at the dy-
namic level, several works dealing with this problem have been
reported (Dong, 2002; Jin & Fu, 2012; Oya et al., 2003). The au-
thor of Dong (2002) proposed an adaptive controller for nonholo-
nomic dynamic systems with unknown inertia parameters. Oya
et al. (2003) and Jin and Fu (2012) develop robust adaptive con-
trollers for nonholonomic dynamic systems with some uncertain-
ties in their dynamics, but need the assumption that the Lagrangian
dynamics are linearly parameterizable. Mauder (2008) presents a
sliding-mode-based robust controller for nonholonomic dynamic
systems with disturbances. As pointed out in Michino and Mizu-
moto (2010), the above-mentioned results suffer from an overly
complicated structure stemming from the number of adaptive
adjusting terms needed to construct the controllers against consid-
ered uncertainties. Although the high gain adaptive feedback con-
troller is rather simple, in practice it may lead to instability or high
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noise or both (Maples & Becker, 1986). On the other hand, control
of the forces of the contact interactions is at least as important
as the position control. Since physically the constraints provide
the necessary reactions, no matter what the proposed control al-
gorithms may be, they are not practical unless the position and
the force of interaction are controlled in a simultaneous way. And
yet, the literature on controlling the two objectives simultaneously
is relatively rare. For this goal several fundamental results were
proposed for mechanical systems with nonholonomic constraints
in Li et al. (2008a); Li and Zhang (2010); Oya et al. (2003), electri-
cally driven mobile manipulators in Li, Ge, Adams, and Wijesoma
(2008b),wheeledmobilemanipulatorswith hybrid joints in Li, Tao,
Ge, Adams, and Wijesoma (2009), and multiple mobile manipula-
tors in Li and Kang (2010); Li, Li, and Kang (2010).

At a dynamic level, although each of the above-mentioned
methods has different characteristics, in practice these control al-
gorithms may be insufficient to solve the problems in terms of
computational burden, once they are designed and are ready to
be implemented. Realizing the advantages and disadvantages of
the methods in the literature on motion and force tracking con-
trol of nonholonomic systems and the computational insufficien-
cies in practical implementation, this paper proposes a new control
strategy formotion and force tracking control of nonholonomic dy-
namic systems by combining cascaded methods and backstepping
techniques. The method is designed in three steps. Step one is that
the kinematic dynamics is feedback-transformed into a chained
form and the tracking error dynamics is converted into a cascaded
system. Step two is that under the framework of cascadedmethods
the stability of the cascaded system coinciding with that in Tian
and Cao (2007) without dilation is guaranteed by designing two
controllers for the two linear subsystems with the interconnection
term satisfying a certain growth condition. Step three is that, with
the two controllers of the kinematic dynamics viewed as virtual
controllers, an overall controller is designed at the dynamic level to
obtain motion/force tracking control of the overall nonholonomic
mechanical system by using backstepping techniques.

2. Problem statement

Consider the following mechanical systems:

D(q)q̈ + C(q, q̇) + G(q) = JT (q)λ + B(q)τ (1)

JT (q)q̇ = 0 (2)

where q and τ denote the n vector of generalized coordinates and
the r vector of generalized control input force, respectively; λ ∈

Rm is the associated Lagrangian multiplier expressing the contract
force;D(q), C(q, q̇)q̇ andG(q) are the n×n symmetric, bounded and
positive definite inertiamatrix, the n vector of centripetal and Cori-
olis torques, and the n vector of gravitational torques, respectively;
B(q) and J(q) are the n × r assumed known input transformation
and m × n constraint matrix, respectively. Here assumptions are
needed that Eq. (2) is completely nonholonomic for all q and t , B(q)
is a full-rank matrix and r is not less than n − m.

Given a desired contact force λd and desired trajectories qd and
q̇d, the control objective is to determine a control law for τ such
that λ, q and q̇ asymptotically converge to λd, qd and q̇d, respec-
tively.

Let v be a vector of independent generalized velocities and de-
fine R(q) such that it maps vector v into a vector of feasible gener-
alized velocities q̇ that satisfies constraint (2), namely

q̇ = R(q)v. (3)

Combining (2) and (3) yields

RT (q)JT (q) = 0. (4)

Differentiating (3) gives

q̈ = R(q)v + Ṙ(q)v. (5)

Thus, the dynamic system (1) satisfying (2) can be transformed into

q̇ = R(q)v (6)

D(q)R(q)v̇ + C1(q, q̇) + G(q) = B(q)τ + JT (q)λ (7)

where C1(q, q̇) = D(q)Ṙ(q) + C(q, q̇)r(q).

Remark 1. Please note that (6) is a purely kinematic subsystem
which will be transformed into chained form.

3. Main results

3.1. Derivation of the cascaded system

We focus on the following class of two-input chained-formnon-
holonomic systems, which are converted from (6) with a coordi-
nate transformation x = Ψ (q), and a state feedback v = Ω1(q)u
under certain explicit conditions satisfied by only systems with
two degrees of freedom (see e.g. Martin & Rouchon, 1994)

ẋ1 = u1,

ẋ2 = u2,

ẋ3 = x2u1

...

ẋn = xn−1u1

(8)

where u = (u1, u2)
T is the input and x is the state.

Remark 2. Under the coordinate transformation, the dynamic
model (7) is accordingly converted into

D2(x)R2(x)u̇ + C2(x, ẋ)u + G2(x) = B2(x)τ + J2T (x)λ (9)

where
D2(x) = D(q) |q=Ψ −1(x)
R2(x) = R(q)Ω1(q) |q=Ψ −1(x)

C2(x, ẋ) = [D(q)R(q)Ω̇1(q) + C(q, q̇)Ω1(q)] |q=Ψ −1(x)
G2(x) = G(q) |q=Ψ −1(x)
J2(x) = J(q) |q=Ψ −1(x)
B2(x) = B(q) |q=Ψ −1(x).
The tracking problem for (8) is to design an appropriate con-

troller so that the state trajectory of system (8) follows a vector-
valued reference signal xd(t) = (x1d(t), . . . , xnd(t))T , which is
generated by a system of the same form as system (9) with ud =

(u1d, u2d)
T .

Assumption 1. Assume u1d = d(t) and there exist nonzero T and
D such that |D| > T > 0 and the bounded continuous d(t) satisfies
|d(t) − D| < T .

Assumption 2. The trajectories xd, their first time derivative and
up to (n − 1)th time derivative inclusive are bounded.

Define the tracking errors as yi = xi − xid, i = 1, . . . , n, and it is
easy to obtain the tracking error dynamics

ẏ1 = u1 − u1d

ẏ2 = u2 − u2d

ẏ3 = u1dy2 + x2(u1 − u1d)

...

ẏn = u1dyn−1 + xn−1(u1 − u1d).

(10)
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