Environmental Modelling & Software 46 (2013) 104—117

journal homepage: www.elsevier.com/locate/envsoft

Contents lists available at SciVerse ScienceDirect

Environmental Modelling & Software

Environmental
Modelling & Software

An extensible toolbox for modeling nature—society interactions

@ CrossMark

Tiago Garcia de Senna Carneiro ®*, Pedro Ribeiro de Andrade®, Gilberto Cimara®,
Ant6nio Miguel Vieira Monteiro ¢, Rodrigo Reis Pereira®

2 Earth System Simulation Laboratory (TerraLAB), Federal University of Ouro Preto (UFOP), Campus Universitdrio, Morro do Cruzeiro, Ouro Preto,

MG 35900-000, Brazil

b Earth System Science Center (CCST), National Institute for Space Research (INPE), Av. dos Astronautas 1758, Sdo José dos Campos, SP 12227-001, Brazil
€Image Processing Division (DPI), National Institute for Space Research (INPE), Av. dos Astronautas 1758, Sdo José dos Campos, SP 12227-001, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 21 March 2012
Received in revised form

8 February 2013

Accepted 7 March 2013
Available online 12 April 2013

Modeling interactions between social and natural systems is a hard task. It involves collecting data,
building up a conceptual approach, implementing, calibrating, simulating, validating, and possibly
repeating these steps again and again. There are different conceptual approaches proposed in the
literature to tackle this problem. However, for complex problems it is better to combine different ap-
proaches, giving rise to a need for flexible and extensible frameworks for modeling nature—society in-

teractions. In this paper we present TerraME, an open source toolbox that supports multi-paradigm and

Keywords:
Nature—society models
Multi-scale modeling
Environmental modeling
Discrete event simulation
Cellular automata
Multi-agent systems

multi-scale modeling of coupled human-environmental systems. It enables models that combine agent-
based, cellular automata, system dynamics, and discrete event simulation paradigms. TerraME has a GIS
interface for managing real-world geospatial data and uses Lua, an expressive scripting language.

© 2013 Elsevier Ltd. All rights reserved.

Software availability

Name: TerraME

Developer: Federal University of Ouro Preto (UFOP), Brazil; National

Institute for Space Research (INPE), Brazil
Contact: tiago@iceb.ufop.br, pedro.andrade@inpe.br
Programming language: Lua
Optional additional software: MySQL and TerraView
License: GNU LGPL (open source)
Website: http://www.terrame.org

1. Introduction

Planners and policy makers need models that capture how
human actions act on natural systems (Turner et al., 1995). These

* Corresponding author. Tel.: +55 (31) 3559 1692; fax: +55 (31) 3559 1660.
E-mail addresses: tiago@iceb.ufop.br (T.G.S. Carneiro), pedro.andrade@inpe.br
(PR. Andrade), gilberto.camara@inpe.br (G. Camara), miguel@dpi.inpe.br
(A.M.V. Monteiro), rreisp@gmail.com (R.R. Pereira).

1364-8152/$ — see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.envsoft.2013.03.002

models represent coupled nature—society systems in different
ways. Their capacity to capture the impact of human actions in
nature depends on the spatial and temporal scales used. It also
hinges on the chosen hypotheses about human behavior and
environmental response. Despite the challenges involved in
building them, these models have an important role. They bring
forth unstated assumptions hidden in policy proposals, helping us
to understand the possible results of different choices (Moran,
2010).

In this paper, we use the term paradigm to mean a worldview
intrinsic to a scientific theory. Models of nature—society in-
teractions use different paradigms, including cellular automata,
agent-based models, map algebra, and system dynamics (White
and Engelen, 1997; Parker et al., 2003; Karssenberg and De Jong,
2005; Batty, 2012). In many cases using a single paradigm is not
enough. For complex problems, it is better to combine different
methods to learn more about how human societies interact with
nature (Rindfuss et al., 2004).

Most designers of nature—society modeling tools choose a
paradigm and build a toolbox that supports it. Supporting a single
paradigm has many advantages. Most paradigms have a lot of
documentation and user communities, which helps potential
adopters. However, designer choices may also limit a software’s


Delta:1_modelling 
Delta:1_-
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
mailto:tiago@iceb.ufop.br
mailto:pedro.andrade@inpe.br
http://www.terrame.org
mailto:tiago@iceb.ufop.br
mailto:pedro.andrade@inpe.br
mailto:gilberto.camara@inpe.br
mailto:miguel@dpi.inpe.br
mailto:rreisp@gmail.com
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.envsoft.2013.03.002&domain=pdf
www.sciencedirect.com/science/journal/13648152
http://www.elsevier.com/locate/envsoft
http://dx.doi.org/10.1016/j.envsoft.2013.03.002
http://dx.doi.org/10.1016/j.envsoft.2013.03.002
http://dx.doi.org/10.1016/j.envsoft.2013.03.002

T.G.S. Carneiro et al. / Environmental Modelling & Software 46 (2013) 104—117 105

ability to grow. Tool designers have to choose a programming
environment, user interfaces, data types and their relations, algo-
rithms, data handling, and storage. A design suited for one para-
digm may not be adequate to support others. Although multi-
paradigm modeling tools can in theory combine different ways of
modeling, building such tools is a hard task. This begs the question:
“What kinds of software architecture are better suited for multi-
paradigm modeling of nature—society interactions?” In what fol-
lows, we refer to this challenge as the multi-paradigm model design
problem.

This paper presents a possible response to this question. We
were inspired by how Bjarne Stroustrup built C++ (Stroustrup,
1994). He designed C++ in a bottom-up, modular fashion, allow-
ing object-oriented, generic programming, and procedural pro-
gramming styles. The flexibility of C++ has no doubt contributed
to its widespread use. Following these ideas, our proposed solution
for the multi-paradigm model design problem stems from three
conjectures. First, the tool should provide a collection of data types
and functions needed by different paradigms. This leads to a
bottom-up design based on building blocks that are combined by
the modeller. The second conjecture is that nature—society in-
teractions happen in geographical space. Unlike human and capital
resources, that are mobile, natural resources are fixed. When
dealing with environmental problems, we have to capture
geographical features such as soil, climate, vegetation, and biodi-
versity in a spatially explicit way. Thus, models for nature—society
interactions need a spatial component that represents natural
landscapes and the results of human interactions with them. Third,
nature—society interactions occur at different scales. Many problems
need to be expressed as multi-scale models where matter, energy,
and information flow between different scales. The toolkit should
allow the user to break a complex model into simpler sub-models.
Each sub-model is a micro-world with its own temporal and
spatial resolution and behavior. Sub-models can then be nested
and combined in different ways. Thus, our proposed architecture
puts together a set of data types with methods to build and connect
geospatial micro-worlds.

Based on these conjectures, we have designed and implemented
the TerraME toolbox. It has building blocks for model development,
allowing the user to specify the spatial, temporal, and behavioral
parts of a model independently. Its components are expressive,
enabling different approaches to be combined. TerraME’s main aim
is flexibility. It does not enforce a unique modeling paradigm, but
provides the tools needed by the modeller. TerraME is an open
source software distributed under the GNU LGPL license and is
available at www.terrame.org.

In the next section, we consider the challenges for designing
software to model nature—society interactions, pointing out the
choices we made. We describe the general architecture of TerraME
in Section 3. Section 4 has examples that show the main features of
TerraME. We finish the paper by reflecting on the contributions and
the limits of our proposed solution to the multi-paradigm model
design problem.

2. Design choices for nature—society interaction modeling
toolboxes

In this section, we discuss four decisions faced by designers of
modeling tools that support nature—society interactions. In each
case, we point out the choices we made in TerraME.

e Choosing which modeling paradigms to support.

e Selecting the model interface.

¢ Defining how the model interfaces with databases and GIS.
e Providing tools for verification, calibration, and validation.

2.1. Choice of modeling paradigms

Nature—society modeling paradigms include Cellular Automata
(von Neumann, 1966), System Dynamics (Forrester, 1961), Agent
Based-Systems (Wooldridge and Jennings, 1995), Map Algebra
(Tomlin, 1990), and Discrete Event System Specification (Zeigler et al.,
2005). Cellular automata (CA) are finite machines organized in a
lattice connected by neighborhood relations. CAs can produce
complex patterns from simple rules. In the system dynamics view,
the world consists of stocks of energy, information, or matter.
Model rules are differential equations defining flows that transport
energy, information or matter between stocks. Agent-based models
represent autonomous individuals that interact with themselves,
the environment, and other agents. Map algebra uses raster maps
to allocate properties in space and provides functions over maps to
convey change. In the discrete event formalism, an event is an in-
dividual temporal episode. Instead of having functions that
compute the next step of the simulation, an event-based model has
a set of events and conditions when they occur.

Most existing modeling tools are centered on a paradigm,
although they may support others. Examples of agent-based
modeling tools are NetLogo (Tisue and Wilensky, 2004) and
RePast (North et al., 2006). System modeling tools include STELLA
(Roberts et al., 1983), Vensim (Eberlein and Peterson, 1992), and
Simile (Muetzelfeldt and Massheder, 2003). PCRaster is a map
algebra toolbox with extensions for dynamic modeling
(Karssenberg et al., 2001, 2009; Wesseling et al., 1996). JDEVS is an
event-based modeling software (Filippi and Bisgambiglia, 2004).
Focusing in a paradigm favors knowledge reuse. Users familiar with
one modeling paradigm will be comfortable when facing a new
toolbox based on similar ideas. If one knows STELLA, learning
Vensim and Simile is straightforward. Models developed in Net-
Logo can be ported to RePast without excessive work (Crooks and
Castle, 2012). Designers can also extend an existing tool to sup-
port other paradigms than their original choice.

The alternative is to build a multi-paradigm modeling tool in a
bottom-up way. This is what we did in TerraME since we hold that
nature—society relations are inherently complex. As expressed by
Mike Batty: “in modeling, the quest for parsimony, simplicity, and
homogeneity is increasingly being confronted by the need for
plausibility, richness, and heterogeneity” (Batty, 2012). A multi-
paradigm toolbox allows modellers to combine different para-
digms when solving a problem. However, such tools are harder to
learn since there are many concepts to be grasped. Flexibility comes
at a price. We recognize that not all users will be willing to make it,
although we believe the effort is worthwhile.

2.2. Selecting the model interface

Modeling toolboxes need to provide analytical power to ex-
press complex problems. Nearly all tools use a programming lan-
guage with additional high-level statements. Some tools also
provide icon-based graphical programming, like the system dy-
namics tools STELLA and Simile. Visual interfaces are appealing and
enable decision-makers to quickly grasp model behavior. However,
it is not easy to express spatial variation using icons. Thus, most
spatially-based tools use a programming language as their main
interface.

In TerraME, we chose a programming language interface. To
support rapid model implementation we chose Lua, an open-source
interpreted language with extensible semantics (lerusalimschy
et al., 1996). The modeller uses a clear and expressive language
that calls demanding operations in C++, hidden from him. This
provides a good trade-off between source code directness and
computational efficiency.


http://www.terrame.org

Download English Version:

https://daneshyari.com/en/article/6964 326

Download Persian Version:

https://daneshyari.com/article/6964326

Daneshyari.com


https://daneshyari.com/en/article/6964326
https://daneshyari.com/article/6964326
https://daneshyari.com

