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a b s t r a c t

Wastewater treatment plant design and operation involve multiple objective functions, which are often
in conflict with each other. Traditional optimization tools convert all objective functions to a single
objective optimization problem (usually minimization of a total cost function by using weights for the
objective functions), hiding the interdependencies between different objective functions. We present an
interactive approach that is able to handle multiple objective functions simultaneously. As an illustration
of our approach, we consider a case study of plant-wide operational optimization where we apply an
interactive optimization tool. In this tool, a commercial wastewater treatment simulation software is
combined with an interactive multiobjective optimization software, providing an entirely new approach
in wastewater treatment. We compare our approach to a traditional approach by solving the case study
also as a single objective optimization problem to demonstrate the advantages of interactive multi-
objective optimization in wastewater treatment plant design and operation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Design and operation of a wastewater treatment plant (WWTP)
are complex tasks, which involve trade-offs between a number of
conflicting economic and operational objective functions, and for
these problems mathematical modelling and simulation combined
with optimization (using engineering judgement and/or mathe-
matical tools) can be of great help. The most obvious example of
conflicting demands is the trade-off between treatment results and
operational costs, e.g., reaching low BOD, ammonium nitrogen and
phosphate levels in effluent implies high consumption of aeration
energy and precipitation chemicals. Another example is the goal to
avoid washout of sludge by operating with shortest possible sludge
retention time, thus, securing treatment results in terms of sus-
pended solids and BOD, but at the same time risking the stability of
nitrification and producing a lot of excess sludge. However, opti-
mization tools included in commercial simulation software as well
as most of the published cases of mathematical optimization of
WWTP design and operation (e.g., Ayesa et al., 1998; Espírito-Santo
et al., 2005; Guerrero et al., 2011; Hernández-Suárez et al., 2004;

Holenda et al., 2007; Rivas et al., 2008) are based on optimizing
only one objective function, into which the objective functions of
interest are lumped up to form some kind of a total cost index. The
most common way in WWTP optimization is to use weights
describing the importance of each objective function and use their
weighted sum as an objective function to be optimized (e.g.,
Espírito-Santo et al., 2005; Guerrero et al., 2011; Hernández-Suárez
et al., 2004; Holenda et al., 2007).

Typically in the modelling phase of an optimization problem for
a real world application, it is not always clear what should be
chosen as objective function(s) to be optimized and what should be
used as constraints. For example, if the optimization tool familiar to
the user can solve problems having only a single objective function,
then the problem will be formulated in a way that conflicting
objective functions are not necessarily recognized (e.g., a single
total cost index is formulated). In other words, the optimization
method is chosen first and the optimization problem is formulated
only after that. In order to take into account all the relevant aspects
of the problem, it is important to identify the relevant conflicting
objective functions as early as possible when formulating the
optimization problem. When the optimization problem has been
formulated according to the best knowledge about the phenomena
involved, then the attention should be turned into how that opti-
mization problem can be solved.
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WWTP design and operation are and always have been multi-
objective by their nature. This means in practice that there exist
several (possibly infinitely many) alternative compromises be-
tween the conflicting objective functions involving different trade-
offs instead of a single solution resulting in optimal performance. A
compromise known as a Pareto optimal (PO) solution (or non-
dominated solution) is a solution where none of the objective
functions can be improved without impairing some other objective
function (Miettinen, 1999). This aspect has not been explicitly
emphasized in WWTP design and operation because the optimi-
zation techniques used have been suitable for only one objective
function. This has resulted in forcing all the objective functions into
a single function to be optimized and hides the real nature of the
problem making it difficult to assess the true optimality of a
solution.

Usually, the single objective function has been a total cost
function that has been minimized in order to find the best (that is,
the cheapest) design. This approach, however, has drawbacks that
may result in loss of information about the relevant characteristics
of the problem and about the interdependencies between different
cost factors as well as includes unnecessary uncertainties. There-
fore, multiobjective optimization (MOO, see e.g., Miettinen, 1999;
Miettinen et al., 2008; Rangaiah, 2009), where an objective func-
tion is used for describing each relevant aspect to be optimized
separately, should be applied to WWTP design and operation. Note
that a MOO approach supports the idea of formulating the opti-
mization problem first without limitations from the optimization
method used. Optimizing the weighted sum of the objective func-
tions is called the weighting method and it is one of the earliest
methods in MOO. One of its widely known drawbacks is that the
solution obtained does not obey the weights selected, in other
words, it does not necessarily emphasize the objective functions
that are given the biggest weights (Nakayama, 1995).

In this paper, we propose to use interactive MOO methods in
WWTP design and operation. In interactive methods, the solution
process utilizes continuous interaction between a decision maker
(DM, that is, a designer or an operator in practice) and the method.
Once the DM has expressed preferences on how the current solu-
tion should be improved, the method computes new (more
preferred) PO solutions. This continues iteratively. This kind of an
approach enables the DM learning about the interdependencies
between the conflicting objective functions, e.g., how different
operational decisions of certain unit processes influence the per-
formance of other processes and the plant as a whole. Therefore,
the DM’s own preferences may evolve along the way due to
learning and (s)he can indicate that by changing the preference
information given to the method. Due to this interaction, the
method can utilize the experience of the DM about WWTP design
who guides the search towards preferred solutions. Therefore, only
PO solutions that are of interest to the DM are computed.

We have found few cases in the literature where multiple
objective functions have been utilized in WWTP design and oper-
ation. Biswas et al. (2007) used multiple objective functions in
determining an optimal choice of wastewater treatment train and
they produced a representative set of the PO solutions to a MOO
problem without using process simulation. Béraud et al. (2007)
applied multiobjective genetic algorithm to produce a representa-
tive set of PO solutions for optimizing simultaneously two objective
functions, namely effluent quality and energy consumption. A
multiobjective genetic algorithmwas also used in the same way by
Liu et al. (2012) to simultaneously maximize an effluent quality
index and minimize energy consumption in MOO of cascade
controller in combined biological nitrogen and phosphorus
removal WWTP. Fu et al. (2008) studied multiple objective func-
tions in controlling integrated urban wastewater systems

consisting of a sewer system, a WWTP and a river model. They
considered two and three objective functions using water quality
indicators in the river as objective functions and the aim was to
compute a representative set of PO solutions by using multi-
objective genetic algorithm.

On the other hand, Flores et al. (2007) considered multiple
objective functions in a conceptual design of activated sludge sys-
tems. A multiobjective methodology was used to evaluate and
compare a small number of alternatives resulting from conceptual
design. Flores-Alsina et al. (2008) studied the effect of input un-
certainty by using Monte Carlo simulations in selecting control
strategies forWWTPs. They considered environmental, economical,
technical and legal objective functions in comparing six different
control strategies by using multiple criteria decision analysis
techniques. Guerrero et al. (2012) utilized random sampling and
selection of nondominated solutions while considering operating
cost, effluent quality and microbiological risks as objective func-
tions in selecting optimal WWTP control setpoints. In addition,
they compared the approach with their earlier work (Guerrero
et al., 2011) for optimizing only total costs. Benedetti et al. (2010)
considered five objective functions in WWTP design and control
under uncertainty, namely the effluent quality, the fraction of time
during which the effluent exceeds the ammonium limit set, the
operating costs, the investment costs and the total costs of the
plant. Their methodology consisted of Monte Carlo sampling
yielding five nondominated solutions that were compared based on
uncertainty analysis related to the objective functions mentioned.
However, none of these approaches in the literature considers
interactiveMOOmethods that enable the DM to actively participate
in the optimization process.

In this paper, we illustrate our interactive approach by
describing an application of the tool developed for interactive MOO
of WWTP design and operation, which combines the commercial
Hydromantis GPS-X wastewater treatment process simulator and
the interactive IND-NIMBUS software for MOO (Miettinen, 2006).
We call this tool GPS-X-NIMBUS. This is an entirely newapproach in
wastewater treatment, although corresponding tools are success-
fully utilized in other fields, see e.g., Miettinen et al., 2008. The basic
functionality of the GPS-X-NIMBUS tool is described in Hakanen
et al. (2011). Preliminary results of multiobjective WWTP opera-
tion and design were presented in Sahlstedt et al. (2010). In this
paper, we describe the results obtained and the interactive solution
process used in more detail as well as emphasize the benefits that
GPS-X-NIMBUS has when compared to approaches described
earlier.

To show the benefits of interactive MOO and the applicability of
GPS-X-NIMBUS in practice, we consider a case study of plant-wide
optimization of a municipal WWTP. The problem deals with
simultaneous optimization of effluent quality as well as different
operating cost factors leading to a problem with five conflicting
objective functions. In addition to this case study, other use cases
can be identified where the GPS-X-NIMBUS tool can be utilized.
For example, an operator may have noticed through practical
experience that a certain unit process at the WWTP is excep-
tionally difficult or risky to use, and funds for its renewal are not
available in the near future. Therefore, (s)he may want to minimize
the use of that process unit or otherwise seek to minimize oper-
ational risks. In such a situation, it is important to know the trade-
offs inherent in the form of treated water quality and/or opera-
tional costs.

The paper is organized as follows. Section 2 describes inter-
active MOO as a way of handling conflicting objective functions
simultaneously and shortly introduces the IND-NIMBUS software.
The process modelling and optimization problem formulation of
our case study as well as the basic operation principle of GPS-X-
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