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a b s t r a c t

In this paper, two nonlinear optimization methods for the identification of nonlinear systems are
compared. Both methods estimate the parameters of e.g. a polynomial nonlinear state-space model by
means of a nonlinear least-squares optimization of the same cost function.While the firstmethoddoes not
estimate the states explicitly, the second method estimates both states and parameters adding an extra
constraint equation. Both methods are introduced and their similarities and differences are discussed
utilizing simulation data. The unconstrainedmethod appears to be faster andmore memory efficient, but
the constrained method has a significant advantage as well: it is robust for unstable systems of which
bounded input–output data can be measured (e.g. a system captured in a stabilizing feedback loop). Both
methods have successfully been applied on real-life measurement data.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Most real-life systems are to some extent nonlinear. For
such systems, nonlinear modelling can improve the identification
results, i.e. reduce the residual error. There exist several types of
nonlinear models, among them black box models such as Volterra
systems, block structured models, neural networks and fuzzy
models. For more information, we refer to Giannakis and Serpedin
(2001).
In this paper, the model structure is a conventional linear

state-spacemodel extendedwith polynomial nonlinear terms. It is
called a Polynomial Nonlinear State-spaceModel (PNLSS) (Paduart,
2008). The PNLSS model serves as an example, but the ideas could
be applied to other nonlinear state-space models as well.
The goal is to estimate the parameters of the nonlinear model

given the exact input and the noisy output measurements. The
states are assumed to be unknown and in order to solve the
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was recommended for publication in revised form by Associate Editor Alessandro
Chiuso under the direction of Editor Torsten Söderström.
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problem we will minimize the least square error between the
measured and modelled output.
The contributions of this work are the following:

• Construction of a constrained optimization method that
allows one to estimate the PNLSS model parameters from
input–output data. The approach is related tomultiple shooting
methods for parameter estimation (Bock, 1987), but is now
applied to black box system identificationwith a procedure that
provides initial estimates of the parameters;
• Evaluation of its properties, such as the estimation of an
unstable system based on bounded input–output data, by
means of simulation examples;
• Comparison of the performances (least square errors) of the two
optimization methods.

The structure of the paper is the following: in Section 2, we
present the model structure. In Section 3, we explain briefly the
generation of initial estimates for the parameters to be estimated.
In Section 4, the twononlinear optimizationmethods are discussed
and Section 5 shows the simulation results. The last section
recapitulates the main conclusions of this paper. Although the
paper does not contain any experimental results, both methods
have already been used in practice, such as the benchmark session
of SYSID2009 (Paduart, Lauwers, Pintelon, & Schoukens, 2009;
Schoukens, Suykens, & Ljung, 2009; VanMulders, Volckaert, Diehl,
& Schoukens, 2009).
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2. Model structure

2.1. Class of discrete time systems considered

As is known very well, state-space models are particularly well
suited for multiple-input multiple-output (MIMO) systems. Let nu
and ny represent resp. the number of input and output signals.
In general, a discrete time nonlinear state-space model can be
formulated as:

x(t + 1) = f (x(t), u(t))
y(t) = h(x(t), u(t)).

(1)

Herein, t = [0 · · ·N − 1] is the discrete time instant, x ∈ Rn×N are
the states and u ∈ Rnu×N and y ∈ Rny×N are the input and output.
n is the model order and N is the total number of time instants.
The upper equation is called the state equation and describes the
evolution of the states. The lower equation is called the output
equation and describes the output as function of the states and
inputs.
In our case, we assume that the exact description of the

nonlinear system is of the form:

x(t + 1) = Ax(t)+ Bu(t)+ Eζ (x(t), u(t))
y(t) = Cx(t)+ Du(t)+ Fη(x(t), u(t)).

(2)

The vectors ζ ∈ Rnζ and η ∈ Rnη contain monomials in x(t)
and u(t); the matrices E ∈ Rn×nζ and F ∈ Rny×nη contain the
coefficients associated with those monomials. nη and nζ are the
number of monomials in resp. η and ζ .
The above mentioned model is called a polynomial nonlinear

state-space model (PNLSS). It consists of a classical linear state-
space model with nonlinear terms Eζ and Fη. The coefficients of
the linear terms in x(t) (the states) and u(t) (the inputs) are given
by the coefficient matrices A ∈ Rn×n and B ∈ Rn×nu in the state
equation, and C ∈ Rny×n and D ∈ Rny×nu in the output equation.
The monomials can be any chosen set of combinations of
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degree and has to be chosen by the user. The n state equations
and ny output equations of a linear state-space system are
extended by adding a polynomial to every equation. The major
advantage of the PNLSS model is its capability of describing a
very large class of nonlinear systems, such as bilinear models,
affine models, nonlinear models with only nonlinearities in the
states, nonlinear models with only nonlinearities in the input and
certain block-structured nonlinearmodels (Wiener, Hammerstein,
Wiener–Hammerstein and nonlinear feedback) (Paduart, 2008). In
this reference, the model has been successfully used on several
application examples. Consequently, it can be stated that the PNLSS
model (2) is a generic ‘‘all-purpose’’ black-box model (although its
approximation capabilities are quite large, e.g. nonsmooth state
evolutions can not be adequately represented). One drawback is
that, in practice, when a full parameterisation is used, with a high
nonlinear degree, the number of parameters grows very large.
Current research focuses on reducing the amount of parameters
by means of similarity transforms.

2.2. Parameterization

Despite the easewithwhich the state spacemodel structure can
handle MIMO systems, we will restrict ourselves without loss of
generality to single-input single-output (SISO) systems (nu = ny =
1) in order to focus on the main topic of this paper.
Define θ ∈ Rnθ as a vector containing all themodel parameters:

θ T =
[
vec(A)T BT C D vec(E)T F

]
(3)

with vec an operator that stacks the columns of a matrix onto
each other. Since all model parameters are included, the model is

overparameterised. This is a consequence of similarity transforms
on the states that do not influence the input–output behaviour.
Both linear and nonlinear transforms can exist. This problem is
taken care of in methods A and B, respectively by means of
a pseudo-inverse and some kind of Levenberg–Marquardt term.
Other approaches exist, such as the use of canonical forms or Data
Driven Local Coordinates (DDLC). The latter approach avoids the
numerical ill-conditioning of the estimation problem in the case of
a canonical parameterisation (McKelvey, Helmersson, & Ribarits,
2004). The DDLC approach has in fact been proven to be equivalent
to the pseudo-inverse (as is used in method A) (Wills & Ninness,
2008). The advantage of the pseudo-inverse is that it can easily be
implemented,while theDDLCmethod is up tonowonly feasible for
linear, bilinear or LPV state space models. The disadvantage is that
all parameters need to be identified, although this is less important
for nonlinearmodelswithmany parameters, since the relative gain
is then small. It has been shown (Pintelon, Schoukens, McKelvey,
& Rolain, 1996) that the choice of parameterisation does not affect
the stochastic properties (i.e. the minimum variance bounds).

2.3. Stochastic framework

The input is assumed to be known exactly (without noise).
If the model is capable of describing the system, the output
measurements ym are related to the system output y(t, θ0):

ym(t) = y(t, θ0)+ v(t) (4)

with θ0 the true parameter values and v(t) the output measure-
ment noise, which is here for simplicity assumed to bewhite Gaus-
sian, zero mean and with finite variance.
Under these assumptions, the least-squares estimator

corresponds to the maximum-likelihood estimator, which is
asymptotically consistent, efficient and normally distributed
(Kendall & Stuart, 1979). The noise condition can be relaxed to fil-
tered white noise with existing second and fourth order moments.

3. Initial estimates

In both cases, the initial estimates for the linear parameters (A,
B, C , D) are found by a two-step procedure (Paduart, 2008).
We choose to use a frequency domain approach. This has two

advantages: bounded initial estimates can also be obtained for
unstable systems and nonparametric weighting is easier than in
the time domain. This robustifies the method significantly.
First, the Best Linear Approximation (BLA) of the system is

estimated (Pintelon & Schoukens, 2001)

ĜBLA(k) =
ŜYU(k)

ŜUU(k)
(5)

with ĜBLA the estimated frequency response function, k the
frequency line, ŜYU the estimated cross-power spectrum between
output and input andwith ŜUU the estimated auto-power spectrum
of the input. The BLA minimizes the output error in least squares
sense. Also the variance σ̂ 2GBLA(k) can be estimated to enhance the
second step by using a weighted least-squares method.
This first step offers a number of advantages: the signal to noise

ratio (SNR) is enhanced, the user can select – in a straightforward
way – a frequency band of interest and, when periodic data are
available, the measurement noise and the effect of the nonlinear
behaviour can be separated. If the total variance lies close to the
noise variance (i.e. the nonlinear variance is small), a linear model
is sufficient, otherwise, a nonlinear model is needed.
The second step is to convert this nonparametric model into a

linear parametric state-space model using the Frequency Domain
Subspace identification method (McKelvey, Akçay, & Ljung, 1996;
Pintelon, 2002).
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