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a b s t r a c t

We study the problem of formation control and trajectory tracking for a group of robotic systemsmodeled
by Lagrangian dynamics. The objective is to achieve and maintain a stable formation for a group of multi-
agent systems, while guaranteeing tracking of a specified trajectory. In order to do so, we partition the
state space for the collective system into coordinates of the geometric center of mass of the group and
coordinates that describe the relative positions of the robots with respect to the center of mass, thus
defining the formation shape. The relative positions can be further partitioned in coordinates which
describe the absolute distances and orientation of each robot to the center of mass. We can rewrite
the total system as dynamics of the center of mass of the formation, and dynamics of the shape, where
the systems are, in general, coupled. By imposing holonomic constraints between the subsystems (i.e.,
imposing a configuration constraint) and hence reducing the system’s dimension, we guarantee that the
group can be driven to follow a desired trajectory as a unique rigid body. Using high gain feedback, we
achieve asymptotic decoupling between the center of mass and the shape dynamics and the analysis is
performed using a singular perturbation method. In fact, the resulting system is a singularly perturbed
system where the shape dynamics describe the boundary layer while the center of mass dynamics
describes the reduced system. After an initial fast transient in which the robots lock to the desired shape,
a slower tracking phase follows in which the center of mass converges to a desired trajectory while
maintaining a stable formation.

Published by Elsevier Ltd

1. Introduction

The technological revolution of the last centurywith the advent
of wireless communications brought a breadth of innovation and
provided ways to efficiently share information between systems.
Interacting systems are no longer constrained to be physically
connected. Thus, in several applications, single complex systems
have been replaced by interacting multi-agent systems with
interconnected structure. In the automotive and aerospace areas,
examples range from assembling structures, carrying large objects,
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exploring unknown environment andmany others. In fact, a group
of robots with simple structure can achieve more complex tasks
at less cost than a single complex robot due to its modularity
and flexibility. In this framework, a new set of problems needs to
be addressed such as formation control and coordinated tracking.
The aim is to have the robots converge and maintain a stable
formation while following a desired trajectory as a group. The
steering commands for the group are provided by a supervisor, that
is, the group should appear to the supervisor as a rigid body.

The problem of coordination of multiple agents has been
addressed through different approaches, various stability criteria
and control techniques. The recent literature on the subject shows
a rich collection of results. Some of the existing approaches, as
highlighted in Tanner (2004), include the behavior based approach
as in Balch and Arkin (1998) in which an interaction law between
subsystems is defined that leads to the emergence of collective
behavior. The leader–follower approach as in Tanner, Pappas,
and Kumar (2004) defines a hierarchy between the agents where
one or more leaders drive the configuration scheme generating
commands while the followers follow the commands generated
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by the leaders. Another approach focuses on maintaining a certain
group configuration and forces each agent to behave as a particle
in a rigid virtual structure (Desai, Kumar, & Ostrowski, 2001;
Egerstedt & Hu, 2001). As we are considering groups of interacting
systems, classical stability needs to be redefined to include the
interconnection aspects between the systems. To this end, the
classical concept of stability has been extended as, for example,
in Swaroop and Hedrick (1996), where string stability is adopted
to analyze the system’s behaviors. In Šiljak (1991), the concept
of connective stability for multiple interacting systems has been
introduced. In a recent survey (Murray, 2007), two main methods
were identified to solve formation control problems: optimization
based method as in Dunbar and Murray (2006), Parker (1993) and
a potential fields method (Atkar, Choset, & Rizzi, 2002; Leonard &
Fiorelli, 2001).

In the first part of this work, we recall the approach in Desai
et al. (2001) and model the total system of robots as a group
element that describes the gross motion of the team and a set of
shape variables that describe the relative positions of the robots
with respect to the center of mass. We then consider another
decomposition in which we model the system as a group element
that describes the position and orientation of the total system
considered as a rigid body and a set of shape variables that describe
the absolute distances between the robots, and therefore define the
formation shape. We proceed by defining a desired configuration
in terms of holonomic constraints between subsystems; hence the
group behaves as a rigid body. Our solution involves designing a
controller to direct the robots to the desired configuration, thus
reducing the system’s dimension, and then driving the team as
a unique rigid body according to a desired trajectory. Using high
gain feedback, we obtain a system in a singular perturbation form
and perform singular perturbation stability analysis. Then we can
approximate the dynamics of the group with the dynamics of the
group’s center of mass.

Singular perturbations have been extensively used to obtain
model reduction, for example, in Ghorbel and Spong (2000),
the problem of multibody systems with rigid links and flexible
joints is addressed using singular perturbation-based model
reduction. Moreover, as it is shown in Young, Kokotović, and Utkin
(1977), high-gain feedback systems can be analyzed as singularly
perturbed systems. In this paper, we focus on second order
dynamics, and consider a general setting which includes systems
operating in a three dimensional space with multiple degrees of
freedom, for example, robots equipped with manipulators.

An important feature of this approach is that, due to a
Lyapunov based analysis, it guarantees robustness with respect to
uncertainties and unmodeled dynamics in multi-agent systems.
This is an important aspect as it accounts for uncertainties in
the interactions among agents. The paper is organized as follows:
in Section 2, we state the problem and briefly recall the main
result in singular perturbation stability analysis to be used later. In
Section 3, we study the formation control problem for two systems
and then we address the general case of n-dimensional systems.
We show, in simulation, the resulting system’s behaviors when the
multiple objectives are imposed. Finally, in Section 4, we study the
decoupling of the absolute distances within the group elements
from the position and orientation of the total group.

2. Problem statement and background

Consider a group of n dynamical systems, each one with m
dimensional configuration space Si = SE(3) × TSE(3) × L, i =

1, . . . , n, where the special Euclidean group SE(3) describes the
set of rigid body configurations (position and orientation) in three
dimensional space, TSE(3) is the tangent space of velocities, and
L (of dimension m − 12) is the space of configurations for the

remaining degrees of freedom (DOF) that each agent is equipped
with. Then the collective configuration space Q = S1 ×· · ·×Sn has
dimension n × m. In addition, we can partition the configuration
space Q = G × B, into two subspaces where B is the Shape or
Base Space and describes the internal configuration of the system,
or internal shape and G is the Structure Group which describes
the systemwith respect to the environment, (position, orientation,
etc.). It is possible to achieve the desirable shape for the system
by imposing holonomic constraints between the systems. We
formalize two problems as follows:

Problem 1. Formation Control and Coordinated Tracking: Given
a set of n robots, design a controller so that they converge to a
desired formation and then drive the geometric center of mass of
the formation along a desired trajectory.

Problem 2. Formation Control, Coordinated Tracking and Steer-
ing: Given a set of n robots, design a controller so that they con-
verge to a desired formation and then drive the geometric center
of mass of the formation along a desired trajectory and steer the
group according to a desired orientation.

Note 1. In both problem formulations, we assume that there is a
communication link between any two robots.

2.1. Stability of singularly perturbed systems

We recall themain result in the singular perturbation literature
which will be used in our analysis. For extensive reviews of results
on singular perturbation, see Khalil (2002) and Kokotović, Khalil,
and O’Reilly (1987). The following theorem which is needed in
proving our results, is from (Khalil, 2002):

Theorem 1. Consider the singularly perturbed system

ẋ = f (t, x, z, ϵ)
ϵż = g(t, x, z, ϵ).

(1)

Assume that the following assumptions are satisfied for all (t, x, ϵ) ∈

[0, ∞) × Br × [0, ϵ0]:
1. f (t, 0, 0, ϵ) = 0, g(t, 0, 0, ϵ) = 0.
2. The equation g(t, x, z, 0) = 0 has an isolated solution z = h(t, x)

such that h(t, 0) = 0.
3. The functions f , g, h and their partial derivatives up to the second

order are bounded for y = z − h(t, x) ∈ Bρ , for some ρ .
4. The origin of the reduced system ẋ = f (t, x, h(t, x), 0) is exponen-

tially stable.
5. The origin of the boundary-layer system dy

dτ = g(t, x, y + h(t,
x), 0) is exponentially stable, uniformly in (t, x).

Then, there exists ϵ∗ such that for all ϵ, 0 < ϵ < ϵ∗, the origin of (1) is
exponentially stable.

3. Decoupling position from shape

We now address Problem 1 on formation control and coordi-
nated tracking for a group of robots/agents with Lagrangian dy-
namics. First, we consider the case of two agents, and then extend
the result to the case of N agents.

3.1. Two robots with m degrees of freedom

We consider the m-dimensional systems S1 and S2, each one
defined on amanifoldM and described by the following dynamics:

Si : Mi(xi)ẍi + Ci(xi, ẋi)ẋi = τi (2)

where i = 1, 2, xi ∈ M are m-dimensional configurations, τi are
control inputs,Mi’s arem × m inertia matrices, and Ci’s arem × m
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