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a b s t r a c t

In this paper we propose a C++-software package implementing the algorithm EKF-AUS-NL (Extended
Kalman FilterwithAssimilation in theUnstable SpacewithNonLinear evolution) designed to performdata
assimilation in the unstable spacewhen the Jacobian of the differential equation cannot be calculated.We
also propose a simple approach to take into account the presence of the model error in the framework
of the EKF-AUS-NL. The software performs the data assimilation using the EKF-AUS-NL algorithm with a
dynamical systems defined as a generic time evolution routine separately implemented. We present two
illustrative examples based on the Lorenz96 and SLAM systems.
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1. Motivation and significance

In some recent works [1–3], a particular formulation (called
EKF-AUS-NL) of the Extended Kalman Filter with Assimilation
confined in the Unstable Space (AUS) was proposed and tested.
This approach also leads to a quite natural nonlinear extension of
the algorithms thanks to the computation of the self- and cross-
nonlinear interaction between the leading Lyapunov vectors [3].
This previous work deals with systems provided with the tangent
linear models computed thanks to the analytical expression of the
Jacobian ∂Fi(x)/∂xj of the deterministic differential equation ẋi =

Fi(x). In this paper we propose a variation of the algorithm EKF-
AUS-NL designed to perform the data assimilation process when
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∂Fi(x)/∂xj cannot be defined or calculated. Moreover we propose
a simple approach to be followed in order to take into account
the presence of parametric model error in the framework of the
EKF-AUS-NL routines. We present a C++ software package that
performs the data assimilation using the EKF-AUS-NL algorithm
with the dynamical systems defined as a generic time evolution
routine. The package can performboth perfectmodel scenario tests
(handling the parameters affected by themodel error as additional
state variables) and actual data assimilation tests using a routine
designed to get the actual measurements. The time evolution is
implemented separately from the EKF-AUS-NL routine, so it can be
written inwhatever language, while the input–output processes of
the dynamical system is performed through a state-file where the
EKF-AUS-NL routines read/write the state variables of the system.

As illustrative examples, we show two perfect model tests ap-
plied to twomodels: the Lorenz96model [4] and the Simultaneous
Localization and Map Model (SLAM) [5–7].
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The software package is implemented in the C++ object oriented
language. To maintain the separation between the software ar-
chitecture and the dynamical system code, the package presented
includes two routines (PrepareForEvolution and PrepareForAnal-
ysis) that, starting from the analysis and forecast error perturba-
tions Xa,f , read/write the initial condition file used by the time
evolution routine (that is run using the system C++ command). The
analysis/forecast error perturbations Xa,f are a suitable number of
column vectors representing the best estimate of the error just
after and before the assimilation procedure.

This software is, in our opinion, very valuable because it permits
to perform data assimilation using the EKF-AUS-NL technique for
very complex models simply writing down an interface routine
that run the dynamical system ensemble members. Moreover, the
possibility tomanage the parametricmodel error allows one to use
our algorithm even in those cases where some model parameters
are affected by uncertainty. This happens, e.g., for the SLAM algo-
rithm presented in the following.

Here we briefly review the EKF-AUS-NL algorithm in order to
introduce the correct notation and to explain how we handle the
model error.

1.1. Theoretical background

The EKF-AUS filter is a particular square root implementa-
tion [8] of the Extended Kalman Filter (EKF) formally introduced
in [9]. The EKF-AUS algorithm is obtained by confining the assimi-
lation in amanifold of dimensionm.Whenm is equal to thenumber
N of degrees of freedom of the system, the algorithm solves the
standard EKF equations. When m = N+

+ N0 the reduced form,
with Assimilation in the Unstable Subspace (EKF-AUS) is obtained,
whereN+ andN0 are the number of positive and neutral Lyapunov
exponents, respectively. Notice that for general dynamical systems
the relation N+

+ N0
≪ N holds.

In this paper and in the code we use the unifying notation
of [10]: the total number of degrees of freedom of the system is N ,
the number of measure is p. The analysis error covariance matrix
is expressed as the matrix product Pa

= XaXT
a , with Xa one of

the ‘‘square root’’ of Pa. We then have that during the forecast
step the linearized time evolution acts on the columns of Pa (the
perturbations) as

Pf
= MXa(MXa)T = XfXT

f . (1)

In the algorithm here presented the time evolution is performed
with the whole dynamical system generating an ensemble of tra-
jectories xaj , each given by

xaj (tk) = xa(tk) + δxaj (2)

where δxaj is the jth column of the matrix Xa and xa(tk) is the
analysis at the kth analysis time tk, i.e. the best estimate of the
state of the system. After the time evolution, we obtain the best
estimate of the state xf (tk+1) (the forecast) and the Xf matrix build
up collecting together the column vectors δxfi given by

δxfi = xfi (tk+1) − xf (tk+1), (3)

where xfi (tk+1) is the time evolution of the states xaj (tk) defined in
Eq. (1). After that we orthonormalize the perturbations δxfi , i.e. the
columns ofXf , and thenwe follow the standard EKF-AUS approach
as described in [9]. As final result of the routine Assimilate we
obtain the analysis state xa(tk+1) and the analysis perturbations
given by the matrix Xa = [δxa1, δx

a
2, . . . , δx

a
m]. The vectors δxai ,

columns of Xa, are the new (orthogonal) perturbations.
These results hold when observations are sufficiently dense,

accurate and frequent [11] that error dynamics is linear, a neces-
sary condition for the EKF to work properly without being subject
to divergence episodes. The convergence hypothesis on which

EKF-AUS relies has been recently proved analytically for linear
systems by [12]. To handle the situations where the linear approx-
imation does not hold exactly, we use the nonlinear generalization
EKF-AUS-NL described in [3].

1.1.1. The nonlinear extension of EKF-AUS: the EKF-AUS-NL algorithm
The authors of [3] obtain in their Appendix A that if one takes

into account nonlinearity up to the secondorder, the perturbations,
namely the columns of X, evolve from Xa at t = tk to Xf at tk+1 =

tk+τ (where τ is the analysis interval) according to the differential
equation (Einstein’s convention on repeated indexes, Fi;j ≡ ∂jFi,
Fi;jk ≡ ∂j∂kFi)

d
dt

Xis = Fi;jXjs, s ≤ m

d
dt

Xis(q,r) = Fi,jXjs(q,r) +
1
2
ᾱFi;jkXjqXkr ,

(4)

with q ≤ r; q, r ∈ [1,ml]; s(q, r) = m +
∑ml

r=1
∑q≤r

q=11, where
ml ≤ m is the number of linear vectors that are involved in the
nonlinear interactions and ᾱ =

√
3. Onemay of course consider all

the possible nonlinear interactions of the m perturbation vectors.
This means that the algorithm should involve m(m + 1)/2 more
vectors, i.e. the number of all possible pairs obtained with the
m linear vectors. In several instances this approach cannot be
followed because the number of vectors to be considered becomes
too large. For this reason we limit the nonlinear interactions to the
leading (most unstable) ml vectors. The condition on the indexes
s,ml, q, r is nothing but a convention to keep the vectors evolving
according to the nonlinear terms separated from the first m =

N+
+N0 vectors already involved in the EKF-AUS algorithm. Notice

that the total number of vectors involved in the analysis process
becomes nowm + ml(ml + 1)/2.

The background covered in the preceding paragraphs are based
on [3]. However, we need to understand how to handle nonlin-
earity when, as it often happens, the differential equation ẋ =

F (x), that drives the dynamical system is known but there are
difficulties to define or calculate the first and second derivative
of F (x). As a first step we have to find a typical scale η (in the
phase-space, not in the physical space of the model) at which the
evolution of the difference between two trajectories is essentially
linear. There are different techniques to estimate η and we refer
the reader to the literature like for example [13,14]. Here is a
slight difference between the treatment suggested in the Appendix
B of [3]. To better reproduce the linearized dynamics when the
linear tangent model is not available, we realize that the approach
briefly suggested inAppendix B is not totally correct.Wenowshow
the formally correct approach. As in the standard case, we have a
trajectory that defines the analysis xa(tk). The nonlinear operator
driving the trajectory from the analysis time tk to the forecast time
tk+1 = tk + τ is M(xa). We thus have xf (tk + τ ) = M(xa(tk)).
Given at time tk them+ml(ml+1)/2 perturbationsXa, let us define
the jth column of Xa as δxaj . We obtain the first m + ml(ml + 1)/2
trajectories to be evolved in this way

xaj (tk) = xa(tk) + η δxaj , j ∈ [1,m + ml(ml + 1)/2] (5)

then the remainingml(ml + 1)/2 trajectories are obtained as

xas (tk) = xa(tk) +
1
2
[δxar + δxaq], (6)

where r, q ∈ [1,ml], q ≤ r; s(q, r) = m + ml(ml + 1)/2 +∑ml
r=1

∑q≤r
q=11. At this point all the trajectories are evolved up to

time tk+1 = tk + τ using the full nonlinear system

xfj (tk+1) = M(xaj (tk)), j ∈ [1,m + ml(ml + 1)]. (7)
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