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The systematic flatness-based motion planning using formal power series and suitable summability
methods is considered for the finite-time deployment of multi-agent systems into planar formation
profiles along predefined spatial-temporal paths. Thereby, a distributed-parameter setting is proposed,
where the collective leader-follower agent dynamics is modeled by two boundary controlled nonlinear
time-varying PDEs governing the motion of an agent continuum in the plane. The discretization of the PDE
model directly induces a decentralized communication and interconnection structure for the multi-agent
system, which is required to achieve the desired spatial-temporal paths and deployment formations.
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1. Introduction

In the past decades, extensive research has been conducted
on the cooperative formation control of multi-agent systems
with possible applications ranging from UAVs over transportation
systems to micro-satellite clusters (see, e.g., Bullo, Cortés, and
Martinez (2009), Murray (2007), Ren and Beard (2008) for rather
recent and comprehensive overviews). Thereby, different analysis
and design approaches have emerged depending on the available
communication topology and the considered formation control
task. In the behavior-based approach a desired set of behaviors
is assigned to the individual agents and the overall behavior
of the system is achieved by defining the relative importance
between the individual behaviors (Balch & Arkin, 1998). The
virtual structure approach relies on the consideration of the entire
formation as a single (rigid) entity and the desired motion is
assigned to the rigid structure (Ren & Beard, 2004). Alternatively,
constraint functions relating the positions and orientations of the
individual agents can be defined (Zhang & Hu, 2008). The potential
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field approach is based on the introduction of structural interaction
forces between neighboring agents in order to stabilize the
system to the equilibrium manifold (Olfati-Saber, 2006). Moreover,
optimization-based approaches are analyzed to minimize the
individual and cumulative formation error (Dunbar & Murray,
2006; Murray, 2007). In general, an additional distinction arises
between leaderless and leader-follower systems. In the latter
either a real or a virtual agent is chosen as the leader, whose
motion follows a desired trajectory. The follower agents track
the movement of the leader while maintaining their overall
formation. Thereby in general feedback interconnection strategies
are analyzed, which either rely on global or local information
corresponding to a centralized or decentralized control scheme to
achieve the agent deployment into prescribed formations.

Besides the discrete analysis of the interconnected individual
agents, continuous models based on partial differential equations
(PDEs) have been used to represent and control traffic flow
(Alvarez, Horowitz, & Li, 1999) or large vehicular platoons
(Barooah, Mehta, & Hespanha, 2009). In view of the analysis
of multi-agent systems, Ferrari-Trecate, Buffa, and Gati (2006)
introduce a semi-discrete continuous-time partial difference
equation framework over graphs, where the spatial discretization
corresponds to the individual agent. It is thereby shown that
the graph Laplacian control proposed in Olfati-Saber and Murray
(2004) coincides with the linear heat equation. To incorporate
certain parameter uncertainties for multi-agent systems modeled
by partial difference equations adaptive control is considered, e.g.,
in Kim, Kim, Natarajan, Kelly, and Bentsman (2008). A wave-like
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PDE model in the limit as the number of vehicles in a platoon
moving in a straight line tends to infinity in proposed in Barooah
et al. (2009). With this, the stability margin of large vehicular
platoons under bidirectional decentralized control was analyzed
and improved by introducing a forward-backward asymmetry
in the control gains. Results on connecting PDEs and distributed
systems towards the evaluation of system theoretic properties
are provided in Sarlette and Sepulchre (2009). In terms of
formation control, linear diffusion-advection-reaction equations
with dynamic boundary conditions were studied in Frihauf and
Krstic (2009) to achieve the deployment into equilibrium profiles.
For this, PDE backstepping (Krstic & Smyshlyaev, 2008) was
applied in order to exponentially stabilize the equilibrium profiles.

In this paper, a systematic nonlinear PDE-based motion
planning framework is proposed for the realization of finite-
time transitions between desired deployment formations along
predefined spatial-temporal paths. For this, nonlinear time-
varying Burgers-like PDEs are used to represent the location
of a continuum of mobile agents in the plane. The desired
deployment formations correspond to the equilibrium profiles of
the governing PDEs, which include shock-like effects as are well
known for Burgers equation (see, e.g., also Krstic, Magnis, and
Vazquez (2008, 2009) for results on their stabilization). Moreover,
a leader-follower configuration is considered, where the positions
or velocities, respectively, of the leader agent and another agent,
subsequently referred to as the anchor agent, serve as boundary
inputs. For their design, a flatness-based approach (see, e.g., Fliess,
Lévine, Martin, and Rouchon (1995) for the general theory for
finite-dimensional systems and, e.g., Lynch and Rudolph (2002),
Petit and Rouchon (2002), Meurer and Zeitz (2005, 2008), Meurer
and Kugi (2009) for extensions to PDEs) is considered, which is
based on the differential parametrization of the system states and
the boundary inputs in terms of a flat or so-called basic output
by making use of formal power series and suitable summability
methods.

The paper is organized as follows: Section 2 introduces the
considered PDE-based leader-enabled deployment problem which
is solved in Section 3 following a flatness-based approach. For
the determination of the feedforward formation control the
assignment of suitable desired trajectories is analyzed in Section 4
in view of the realization of the leader-enabled deployment into
planar curves. Simulation results are presented in Section 5 and
some final remarks conclude the paper.

2. PDE-based leader-enabled deployment

The leader-enabled deployment of mobile agents is considered
under the assumptions that the agents are fully actuated and op-
erate in a common reference frame. Motivated by the correspon-
dence of graph Laplacian control and the linear heat equation in the
limit as the number of interconnected agents approaches infinity
(Ferrari-Trecate et al., 2006), subsequently, the planar motion of
the agents in the (x!, x*)-domain is introduced in terms of two de-
coupled nonlinear heat equations in the form of modified viscous
Burgers equations with time-varying parameters.

2.1. Burgers equations and continuous agent topology

The motivation to use Burgers-type equations in the deploy-
ment of a continuum of interconnected agents is twofold. To
generate complex profiles involving corners (Fig. 1, left) and
“switchback” shapes (Fig. 1, right), one option is to use a linear
PDE model that is of high order in the spatial variable ¢, where
« denotes the continuous index of the agents. This option creates
both considerable challenges for stabilization and for actuation.
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Fig. 1. Examples of deployment profiles for multi-agent continuum in the (x', x?)-
plane with the a-coordinate representing the continuous communication path.
Anchor and leader agents are marked by x and o.

With regards to stabilization, linear Korteweg-de Vries (third or-
der), Kuramoto-Sivashinsky (fourth order), and higher-order PDEs
are much harder to stabilize than parabolic PDEs. With regards to
actuation, higher numbers of derivatives in « in the PDE require to
employ a higher number of boundary conditions, meaning, a higher
number of leaders and anchors.

The second option is to stick with PDEs that are second-
order in «, namely, parabolic, but allow nonlinearities, such as in
the Burgers equation. The quadratic nonlinearity in the Burgers
equation, which generates shock-like equilibrium profiles, allows
for corner-like shapes in deployment profiles. At the same time, the
motion planning and stabilization problems for Burgers equation
are tractable, with a number of boundary conditions/inputs that is
no higher than for linear parabolic PDEs.

Thus, the Burgers equation is a natural choice for considerably
expanding the catalog of achievable deployment profiles, without
dramatically expanding the complexity of the problem of deploy-
ing the agents to the desired profile.

We consider an agent continuum in the (x!, x*)-plane (cf. Fig. 1)
with the communication path represented by the continuous
independent coordinate « € [0, 1] referring to the agent index
in the continuum. The locations of the anchor and leader agents at
o = 0(x)and o = 1(o)serve as inputs, whose temporal paths are
determined by flatness-based motion planning and feedforward
control. Each ¥ = ¥ (a,t),j = 1,2, is thereby governed by a
boundary controlled PDE, which determines the individual motion
of the agent continuum in the x¥/-direction. By superimposing the
respective x'- and x*>-contributions, the desired planar deployment
is achieved along prescribed spatial-temporal motion paths. The
PDE formulation thereby in particular enables a design, which
is independent of the actual communication topology. The latter
is induced by means of a finite difference discretization scheme
to transfer the results from an agent continuum to a discrete
set of agents, where any follower agent processes only local
information.

2.2. Distributed-parameter agent dynamics

As pointed out above, in the following a modified viscous
Burgers equation is considered to model the motion of the mobile
agent continuum with respect to the ¥ («, t)-coordinate,j € {1, 2},
ie.

3X(a,t) = dd2(a, t) — P¥ (a, )3, ¥ (at, t)
+d(O¥(a, ), ae(0,1),teRy, (1a)

with @, b/ > 0, the time-varying parameter ¢/(t) € R, and R;, =
{t e R |t > tp}. The independent coordinate « corresponds to an
agent index in a large group (continuum) of agents. The positions
of the anchor agent (@« = 0) and the leader agent (@ = 1) are
governed by the inhomogeneous Dirichlet boundary conditions

¥O0,0=u®), ¥, 0=u®), t>t. (1b)
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