
SoftwareX 7 (2018) 88–94

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

LUMA: A many-core, Fluid–Structure Interaction solver based on the
Lattice-Boltzmann Method
Adrian R.G. Harwood *, Joseph O’Connor, Jonathan Sanchez Muñoz,
Marta Camps Santasmasas, Alistair J. Revell
School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, M1 3BB, United Kingdom

a r t i c l e i n f o

Article history:
Received 11 January 2018
Received in revised form 13 February 2018
Accepted 21 February 2018

Keywords:
Lattice-Boltzmann Method
Finite-Element Method
Flow simulation
Fluid–structure interaction

a b s t r a c t

The Lattice-Boltzmann Method at the University of Manchester (LUMA) project was commissioned to
build a collaborative research environment in which researchers of all abilities can study fluid–structure
interaction (FSI) problems in engineering applications from aerodynamics to medicine. It is built on the
principles of accessibility, simplicity and flexibility. The LUMA software at the core of the project is a
capable FSI solverwith turbulencemodelling andmany-core scalability aswell as awealth of input/output
and pre- and post-processing facilities. The software has been validated and severalmajor releases bench-
marked on supercomputing facilities internationally. The software architecture is modular and arranged
logically using a minimal amount of object-orientation to maintain a simple and accessible software.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1.7.3
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-18-00007
Legal Code License Apache License 2.0
Code versioning system used Git
Software code languages, tools, and services used C++, MATLAB, Python, MPI, OpenMP
Compilation requirements, operating environments & dependencies Windows/Linux/Mac OS, C/C++ Compiler, MPI, HDF5, LAPACK, VTK
Link to developer documentation/manual https://github.com/aharwood2/LUMA/wiki
Support email for questions adrian.harwood@manchester.ac.uk

1. Motivation and significance

Computational Fluid Dynamics (CFD) is the science of simu-
lating the physical behaviour of fluids using computers. It is an
essential tool for design, analysis and validation. A suitable set of
discretised transport equations governing the physics of the fluid
are solved at discrete time-steps to produce a time-varying spatial
field of physical quantities such as velocity, density and pressure.
Similarly, the structural mechanics of deformable bodies can be
modelled using Newton’s laws of motion and solved over time,
according to the level of detail required.

Fluid–Structure Interaction (FSI) is the coupled analysis of CFD
with structural mechanics. Existing software implementations of
these solvers vary in complexity, accuracy and speed depending
on the modelling strategies chosen. Fluid dynamics solvers are
generally based on either Eulerian approaches such as the Fi-
nite Volume Method (FVM) [1–4], or Lagrangian methods such as

* Corresponding author.
E-mail address: adrian.harwood@manchester.ac.uk (A.R.G. Harwood).

Smoothed Particle Hydrodynamics [5]. The Finite Element Method
(FEM) is used widely in engineering for structural modelling [6,7].
The development of LUMA continues to be motivated by the wide
range of FSI problems for which simulation is essential. In partic-
ular, the modelling of flexible filaments are an area of significant
importance in the fields of aerodynamic drag reduction [8], flow
control [9] and sensing [10].

In research environments, modelling and simulation software
should be a capable platform for the development of new fea-
tures, while also retaining simplicity in order to facilitate mod-
ification and debugging. This accelerates the uptake of the soft-
ware by students with a range of programming experience and
reduces barriers for meaningful contribution in, what can be, short
project time frames. Full-featured, open-source engineering soft-
ware [3,11] makes thorough use of object-orientated features for
maximumcode reuse and flexibility. However, this software can be
difficult to customise for the novice user and can be an obstacle to
research. LUMA has been developed for willing contributors with
less experience of object-oriented programming (OOP) languages
by using a logical, but simplified set of OOP features in class design.

https://doi.org/10.1016/j.softx.2018.02.004
2352-7110/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2018.02.004
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.02.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-18-00007
https://github.com/aharwood2/LUMA/wiki
mailto:adrian.harwood@manchester.ac.uk
mailto:adrian.harwood@manchester.ac.uk
https://doi.org/10.1016/j.softx.2018.02.004
http://creativecommons.org/licenses/by/4.0/


A.R.G. Harwood et al. / SoftwareX 7 (2018) 88–94 89

Table 1
Table of features available since LUMA v1.7.

Features since LUMA v1.7

Git Version Control Doxygen Documentation
Complete Wiki with Validation Cases

LBM Pull Kernel Immersed Boundary Method [22]
Embedded Grid Refinement [13] MPI Many-Core Parallelisation
Load-Balancing Decomposition Body Force Calculation [23]

Bounce-Back No-Slip BCs Interpolated Bounce-Back BCs [24]
Forced Equilibrium Velocity BCs Regularised Velocity BCs
Regularised Pressure BCs Symmetry BCs (Specular Reflection)
Periodic BCs

Body Forcing Smagorinksy Turbulence Model
SRT/BGK Collision Model KBC Collision Model
Time-Averaging Facility Restart Facility

Point Cloud Reader HDF to VTU Post-Processor
HDF5 Output Library of Point Cloud Input Files

Inheritance is kept to a single level with functions not related
to physics abstracted away into manager classes. Methods and
fields are intuitively named and coding standards are imposed to
promote clarity over elegance.

2. Software description

Lattice-Boltzmann at The University of Manchester (LUMA) is
an initiative which aims to develop novel, physical modelling for
complex engineering simulation, underpinned by a flexible, but
developer-friendly, many-core accelerated software framework.
Development is collaborative , inclusive and centred on a simple
version control process with a regular developer release schedule
and continuous validation. At the heart of the initiative are appli-
cations in aerodynamics, bio-fluids and flow control.

2.1. Flow solver

The choice of flow solver is crucial for achieving desired levels
of accuracy while managing complexity. The Lattice-Boltzmann
Method (LBM) [12] is an alternative to traditionalmethods for sim-
ulating flow physics and is characterised by its simplicity. Rather
than solving the Navier–Stokes as in the majority of CFD software,
LBM represents fluidmotion at a smaller scale using the Boltzmann
equation(

∂

∂t
+ e⃗ · ∇

)
f = Ω (1)

where f is the probability density distribution associated with a
group of particles, Ω a local particle collision operator, and e⃗ a
particle velocity. This equation may be discretised in space and
time with spatial discretisation based on a uniform lattice of nodal
locations which we refer to as a grid. If the velocity space is
similarly discretised, such that groups of particles are only allowed
to travel along a set of links between spatial nodes, then fi ∈ f
where fi is the probability of finding a particle at a given nodal
location with velocity e⃗i. The discrete, lattice-Boltzmann equation
then reduces to

f (x⃗ + e⃗iδt, t + δt) = Ωi(x⃗, t). (2)

The solution of Eq. (2) proceeds as a two-step process: (1) compu-
tation of the particle distributions under the collision operation Ω

followed by (2) the convection of these particles to their immedi-
ate neighbours along adjoining lattice links. These two steps are
referred to as the ‘collision’ and ‘streaming’ operations, respec-
tively, in the remainder of this paper.

Variation in the local grid resolution is essential for compu-
tational efficiency; fine-grain calculations are only performed in

areas of interest. In LUMA, refinement is implemented by embed-
ding grids of higher resolution within other grids. LUMA offers
both manual and automatic methods for defining the location of
these grids and supports nesting to allow the construction of a
grid hierarchy. A spatial and temporal refinement of factor two
is applied across each transition. Time stepping proceeds on each
grid at its local temporal scale with synchronisation every two
cycles between grid pairs. The algorithm of Rohde et al. [13] is
used to communicate populations between adjacent grids due to
its simplicity and efficiency.

2.2. Structural solver

The structural solver is based on the Finite Element Method
(FEM) and has been specifically designed for high aspect ratio
structures undergoing large deformations (e.g. flaps, filaments,
cilia) [14]. Co-rotational Euler–Bernoulli beam elements are used
to represent the structure while geometric non-linearity due to
large deformations is incorporated via a non-linear FEM formu-
lation with Newton–Raphson sub-iterations. Second-order time
stepping is achieved via the implicit Newmark time integration
scheme. Although flexible objects are modelled exclusively using
these types of elements at present, the design of the structural
solver does allow other elements to be added to LUMA as required.
Developers must define and implement suitable mappings for the
communication of displacements/forces between the fluid and the
elements chosen.

2.3. Fluid–structure coupling

The immersed boundary method (IBM) is used to enforce the
no-slip condition on deformable bodies within LUMA [15,16]. The
benefit of this approach is that it allows the fluid and structure to be
handled separately on their own independent grids – negating the
need for regular re-meshing procedures – while also facilitating
large structural deformations, which are otherwise challenging
with body-fitted grids. Structures are represented as a collection
of surface markers with a sphere of influence. Bi-directional force
information is passed between markers and fluid points within
this sphere each fluid time step. For efficiency purposes, LUMA is
only capable of handling cases where the fluid mesh resolution
is finer than the structural mesh. This is achieved via a mapping
routine between the IBM forces and the FEM structure. To ensure
stability across awide range of input conditions, a strongly coupled
sub-iterative scheme is used for the FSI coupling [17]. During the
sub-iteration procedure, a fixed relaxation factor is used to update
the structural velocities [18] and convergence is achieved when
the difference between consecutive iterations reaches a tolerance
value.

2.4. Software functionalities

LUMA is written in C/C++ and designed for an x64machine run-
ning Linux, MacOS or Windows. The software may be compiled to
run in serial or parallel depending on requirements and target plat-
form capabilities. Parallel computing capabilities are implemented
through decomposition of the problem into load-balanced blocks
with added halo cells (ghost cells). Inter-block communication
between halo cells uses the Message Passing Interface (MPI) [19]
andmulti-threading is implemented for each block using OpenMP.

Input/Output (I/O) facilities include surface mesh construction
and point cloud reading and pre-processing tools. Point clouds can
be generated from depth-sensing cameras or from CAD geometry,
the latter using our STL to point cloud conversion tool. Parallel,
binary data I/O is implemented using Hierarchical Data Format
5 (HDF5) [20] and allows the reading of initial conditions for



Download	English	Version:

https://daneshyari.com/en/article/6964855

Download	Persian	Version:

https://daneshyari.com/article/6964855

Daneshyari.com

https://daneshyari.com/en/article/6964855
https://daneshyari.com/article/6964855
https://daneshyari.com/

