
SoftwareX 7 (2018) 122–128

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

DLTPulseGenerator: A library for the simulation of lifetime spectra
based on detector-output pulses
Danny Petschke *, Torsten E.M. Staab
University Wuerzburg, Department of Chemistry, LCTM Roentgenring 11, D-97070 Wuerzburg, Germany

a r t i c l e i n f o

Article history:
Received 20 October 2017
Received in revised form 9 April 2018
Accepted 10 April 2018

Keywords:
Lifetime spectroscopy
Signal processing
Pulse simulation

a b s t r a c t

The quantitative analysis of lifetime spectra relevant in both life and materials sciences presents one
of the ill-posed inverse problems and, hence, leads to most stringent requirements on the hardware
specifications and the analysis algorithms. Here we present DLTPulseGenerator, a library written in
native C++ 11, which provides a simulation of lifetime spectra according to the measurement setup. The
simulation is based on pairs of non-TTL detector output-pulses. Those pulses require the Constant Fraction
Principle (CFD) for the determination of the exact timing signal and, thus, the calculation of the time
difference i.e. the lifetime. To verify the functionality, simulation resultswere compared to experimentally
obtained data using Positron Annihilation Lifetime Spectroscopy (PALS) on pure tin.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version v1

Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX-D-17-00077

Legal Code License BSD-3-clause

Code versioning system used GitHub

Software code languages, tools, and services used C/C++ and Python

Compilation requirements, operating environments & dependencies OS: Microsoft Windows
Compilation requirements (for DLTPulseGenerator.h/.cpp only): should work with any C++
compiler (has to provide C++11 standard) – recommended: MS-VSCompiler (at least version
2013)
Dependencies for example C++ project - AppDLTPulseGenerator:Microsoft Visual Studio
2015
Dependencies for C++ wrapper in Python - pyDLTPulseGenerator.py: ctypes-library
Dependencies for example project in Python - pyDLTPulseGeneratorApp.py:matplotlib,
NumPy

If available Link to developer documentation/manual A Readme.md file can be found on GitHub:
https://github.com/dpscience/DLTPulseGenerator/blob/master/README.md

Support email for questions danny.petschke@uni-wuerzburg.de

1. Introduction and significance

Lifetime spectroscopy has become an establishedmethod in life
science, physics andmaterials science over the last decades. A first
step was taken in the early 1960’s by several groups measuring

* Corresponding author.
E-mail addresses: danny.petschke@uni-wuerzburg.de (D. Petschke),

torsten.staab@uni-wuerzburg.de (T.E.M. Staab).

the lifetime distributions of antielectrons (positrons) in materi-
als using photomultiplier–scintillator combinations to detect the
gamma rays, which are emitted when they are annihilated with
an electron [1–3]. This method, known as Positron Annihilation
Lifetime Spectroscopy (PALS), is used for microstructure investiga-
tions in a broad range of material classes from metals [4–9] and
semiconductors [10,11] to polymers [12,13] and porous glasses
[14,15]. The characteristic or specific lifetimes are highly sensitive
to the kind and size (from several angstroms to nanometers) of

https://doi.org/10.1016/j.softx.2018.04.002
2352-7110/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2018.04.002
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.04.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-17-00077
https://github.com/dpscience/DLTPulseGenerator/blob/master/README.md
mailto:danny.petschke@uni-wuerzburg.de
mailto:danny.petschke@uni-wuerzburg.de
mailto:torsten.staab@uni-wuerzburg.de
https://doi.org/10.1016/j.softx.2018.04.002
http://creativecommons.org/licenses/by/4.0/


D. Petschke, T.E.M. Staab / SoftwareX 7 (2018) 122–128 123

Fig. 1. Schematic illustration of the library architecture. DLTPulseGenerator expects four structures for initialization. DLTPulseF holds a vector of the data points (time vs.
voltage) in double precision represented by the class DLTPointF.

material defects (e.g. impurities in semiconductors, vacancies in
metals or pores in glasses) and range from several picoseconds
to microseconds. After the technical realization of single photon
sensitive detectors (photodiodes, APD — avalanche photodiodes),
methods such as Fluorescence Lifetime Spectroscopy (FLS), Flu-
orescence Lifetime Imaging Microscopy (FLIM) or Fluorescence
Lifetime Correlation Spectroscopy (FLCS) became feasible and are
used nowadays to investigate (life cell) protein interactions [16] or
diffusion dynamics [17].

Those lifetime spectra aremathematically described by a sumof
exponential lifetimedistributions fi convolutedwith an Instrument
Response Function (IRF) g . According to the number of components
N , the resulting function f is given as

f (t) =

N−1∑
i=0

fi(t) =

N−1∑
i=0

Ii
τi

exp
{
−

t
τi

}
, (1)

where τi as the ith component specific lifetime and Ii its corre-
sponding intensity. Mostly, the IRF is analytically approximated by
a Gaussian distribution function1

g(t|µ, σ ) =
1

σ
√
2π

exp

{
−0.5

(
t − µ

σ

)2
}

, (2)

where σ is the standard deviation and µ is the mean.
A quantitative analysis of the lifetime spectra and, thus, the

extraction of the relevant information, i.e. the specific lifetimes
and its intensities, needs to solve the ill-posed inverse problem,
which means that the uniqueness or even the existence of the
solution is not always assured [18]. Various approaches are used:
the Maximum-Likelihood Method, the most commonly used Least-
Square Fitting (software: e.g. Positronfit [19–21], PALSFit [22,23],
LT [24,25], FluoFit [26] or SymPhoTime 64 [27]) or the Bayesian
approach using the quantified Maximum Entropy Method (MEM
or MaxEnt) (software: e.g. MELT [28,29]). Especially for spectra
consisting of multiple lifetime components and/or having shorter
specific lifetimes than the instrumental resolution (means: τi < σ ),
an IRF with minimum deviations from the model function Eq. (2)
is required to solve this ill-conditioned problem, i.e. this is decisive
for an exact data treatment. Therefore, the setup and the param-
eters relevant to determine the correct timing signal from the

1 Different distribution functions such as Lorentz/Cauchy or Voigt as well as
superpositions and skewing of distribution functions are not considered in this
work but could be easily implemented.

received pulses, using the Constant Fraction Principle (CFD), needs
to be fully optimized to guarantee reproducible and comparable
results.

DLTPulseGenerator library generates pairs of detector pulses
(non-TTL signals) with exponentially distributed (Eq. (1)) time
differences, i.e. the lifetime, by taking the pulse shape and the
uncertainties (Eq. (2)) of the most relevant hardware components
into account (Fig. 2). This allows the user to study the influences
of both the measurement setup and configuration on the lifetime
spectrum without being connected to the hardware.

2. Software description

DLTPulseGenerator is written in native C++ 11 (ISO/IEC 14882:
2011). It provides the optional compilation as static or linked
library to make it easy accessible to other programming languages
which are preferentially used in research and engineering, e.g.Mat-
lab (using mex-library) or Python (using ctypes-library,2).

The class DLTPulseGenerator expects four structures (C/C++
syntax: struct) for initialization (Fig. 1):

i. DLTSetup
ii. DLTPulse
iii. DLTPHS
iv. DLTSimulationInput

These contain the specifications of the setup and information
on pulse shape, pulse height distribution and the lifetime dis-
tributions. A pulse is represented by the class DLTPulseF and
consists of a vector (std::vector) which holds the data points (class
DLTPointF ).

Calling the function DLTPulseGenerator::emitPulses expects:

I. a pointer to an object of the class DLTPulseF, which is then
manipulated and filled with data points (time [ns] vs. volt-
age [mV]) in double precision and

II. the trigger-level.

In the following chapters, a detailed overview of the physical
and mathematical background, which the simulation is based on,
is given while relating to the mentioned structures (C/C++ syntax:
struct).

2 pyDLTPulseGenerator: a class in Python showing the functionality and use of
ctypes-library in combination with DLTPulseGenerator (compiled as linked library),
is provided by the author.



Download English Version:

https://daneshyari.com/en/article/6964872

Download Persian Version:

https://daneshyari.com/article/6964872

Daneshyari.com

https://daneshyari.com/en/article/6964872
https://daneshyari.com/article/6964872
https://daneshyari.com

