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a b s t r a c t

The Discontinuous Element Insertion Program is a MATLAB/Octave toolbox for inserting zero-thickness
interface elements into two and three dimensional finite element meshes. These interface elements,
termed herein as ‘‘couplers’’, are used for intrinsic cohesive zone modeling and for the Discontinuous
Galerkin method. The underlying algorithm is topology based and is suitable for complex, unstructured
meshes of mixed-type linear and quadratic elements. Insertion is specified according to regions or
subdomains within the overall analysis domain, a geometrically intuitive means to designate the coupler
locations.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and Significance

The popularity of discontinuous formulations for computa-
tional solid mechanics has steadily increased in recent years.
Physical applications relevant to fracture mechanics include frag-
mentation of brittle materials [1,2], delamination in composite
materials [3–5], hydraulic fracturing [6,7], and grain boundary
cracks in polycrystalline materials [8]. Similarly, the Discontinu-
ous Galerkin (DG) method [9–12] has been applied in the solid
mechanics field to efficiently model sharp gradient features and
to enable mesh adaptivity. A common approach for numerically
realizing thesemethods is using the so-called zero-thickness inter-
face finite elements [13], whereby an element is created through
node duplication such that the two sides of the interface initially
coincide but subsequently may separate apart. Unfortunately, at
the present time, standard commercial finite element codes do
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not contain mesh generation features for zero-thickness elements.
Thus, the burden is placed on the user to create the modified mesh
connectivity, which can be highly non-trivial for complex meshes
in three dimensions.

Various researchers have proposed algorithms for generating
zero-thickness elements for specialized applications. Some of the
earliest examples were developed for adaptively inserting the ele-
ments during fragmentation simulations [1,14]. These algorithms
support the extrinsic cohesive zone (CZ) modeling approach [15–
17] ‘‘on-the-fly’’ based on element-local fracture criteria to track
the propagation of cracks within a brittle material under impact
loading. These algorithms have not yet been implemented in open-
source software. Other methods, such as intrinsic cohesive zone
models and Discontinuous Galerkin approaches, instead require
all interface elements to be present from the start of a simula-
tion at predetermined locations. These approaches could benefit
from concurrent insertion algorithms where the list of interface
facets are determined based on intuitive geometrical features
of the physical domain. More recently, an algorithm and open-
source code [18] have been developed for inserting zero-thickness
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elements throughout the mesh as a pre-processing step, which
has been applied to model grain boundary cracking, composite
delamination, and matrix cracking [19] using a hybrid DG-CZ for-
mulation [2]. However, that approach can be applied only when
interface elements are required along all inter-region boundaries
rather than a selection of them. Therefore, a method that provides
the user with greater flexibility for choosing the location and type
of interface elements is desirable.

In the current work, an open-source software package is
developed from a general-purpose algorithm [20] for inserting
zero-thickness interface elements, termed herein as ‘‘couplers’’,
into specified regions of two and three dimensional conforming
meshes. The term ‘‘coupler’’ is introduced since the algorithm
is appropriate for the two common types of interface elements
that have different connectivity templates: intrinsic cohesive zone
elements andDiscontinuousGalerkin elements. The distinguishing
feature is that the user implicitly designates the locations for
coupler insertion by (1) providing lists of elements within regions
of the overall analysis domain and (2) naming the pairs of regions
between which couplers should be inserted. By this geometrically
intuitive means, couplers can be selectively inserted within spe-
cific regions or along specific interfaces. Also, different types of
couplers as well as different material properties may be directly
assigned to these particular sets, providing an intuitive means
to complete the description of the interfacial-modified mesh for
analysis purposes. The generation of these interfacial meshes is a
key enabler of mechanical performance modeling of interface for
debonding in fibrous composites [5,21] and grain boundary sliding
and cavitation in polycrystalline metals [22,23].

2. Software description

The DEIP package contains a source directory with coupler
insertion and finite element analysis scripts and an examples di-
rectory to demonstrate the modules. The files are compatible both
with MATLAB and with Octave. An installation script loads the
source directory into the user’s search path, and a user-manual
documents the usage of the package. The following sections de-
scribe the underlying algorithm and the concept of regions for
designating the coupler locations aswell as listing themodules and
a typical workflow for using the package.

2.1. Topological definitions

The concept of regions that drives the insertion of couplers
by DEIP is derived from the topology of a domain consisting of
a conforming mesh of finite elements in two (2D) or three (3D)
dimensional space [24]. Throughout the following discussions,
topological entities are identified by italic typeset. Each element
in the mesh is defined by a set of nodes which are points within
the domain associatedwith their particular coordinates; see the 2D
example in Fig. 1. In 2D, meshes containing a mixture of triangu-
lar and quadrilateral elements are considered, and in 3D, meshes
containing tetrahedral, pyramid, wedge, or hexahedral elements
are permitted. In Fig. 1, nodes are designated by numbers and
elements are denoted by lower-case letters. For example, element
a is composed of the three nodes 1, 4, and 5. The term facet refers
either to an edge in 2D or a face in 3D on the boundary of an element.

In addition to the above standard features associatedwith finite
element discretization, we define a region as a contiguous set of
elements within the domain, which in general may form noncon-
vex subdomains and consist of spatially disjoint sets of elements.
Each element in the domain is a member of exactly one region. In
Fig. 1(a), the regions are denoted by capital letters, and the elements
belonging to each region share the same color. Examples of regions
in the context of finite elementmodeling include the fibers and the

surroundingmatrix in composites, where each region is considered
to have different material properties. However, herein a region
is a purely geometrical construct to enable completely general
applications.

The facets of all the elements in the domain can be separated into
three disjoint sets. The first set are those facets which lie on the
domain boundary, which are adjacent to exactly one element. The
second set are those which lie between elements of two different
regions, which are said to belong to interfaces. This set is further
divided according to pairs of regions, such that interface(A,B) is the
set of all facets between region A and region B. The third set are
those which lie between elements of the same region. Such facets
belonging to region C will be denoted as intraface(C), and so forth.
Interfaces are shown as thick line segments in Fig. 1while intrafaces
are shown as thin line segments.

The last relevant topological concept defined herein is the sec-
tor. Two elements are defined to belong to a sector if the shared facet
between them is not a facet designated to be cut by a coupler (either
interface or intraface). A sector is then the largest set of elements
satisfying this definition. For example, elements b, c, and d form a
sector around node 5 in Fig. 1.

2.2. Coupler insertion algorithm

A topological-based algorithm is presented for inserting cou-
plers along the interfaces or intrafaces in the domain. In the finite el-
ement literature, such computational entities are typically referred
to as ‘‘zero-thickness elements’’ or ‘‘interface elements’’. Herein,
we apply the term coupler to distinguish from the other topological
definitions made in Section 2.1 and to provide for broader types
of computational entities. Thus, a coupler is defined as a topo-
logical unit consisting of nodes from exactly two elements which
are adjacent across either an interface or intraface. The coupler is
generated by duplicating the nodes lying on the facet shared by the
two elements to effectively split themesh along that facet.

These couplers commonly appear as numerical realizations of
discontinuous formulations for modeling PDEs. For example, to
model the progressive debonding in composites, intrinsic cohesive
zone models can be introduced as interface couplers between the
elements of the fiber and matrix constituents. The couplers are
present in the analysis from the initial stage in order to capture
the initiation and progression of fracture at the interface through a
traction-separation relation. Regarding the intrinsic cohesive zone
models, the readermay consult [1,2,5,25] formathematical aspects
and [18,26] for notes on implementation.

Briefly, let Ω denote an open bounded domain with Lipschitz
boundary and containing (possibly multiple and/or disjoint) inter-
facesΓI that partitionΩ into a collection of regionsΩ ′ such that the
closure of Ω ′ equals to the closure of Ω . Furthermore, we denote
the displacement field as u, the linear elastic stress derived from
the displacement as : σ = C : ε (u), the material moduli as C,
and the symmetric gradient operator as : ε. Then, the weak form
of intrinsic cohesive zone models is posed as finding u ∈ H1

0

(
Ω ′

)
such that for all w ∈ H1

0

(
Ω ′

)
:∫

Ω ′

ε (w) : C : ε (u) dΩ +

∫
ΓI

[[w]] · t ([[u]]) dΓ =

∫
Ω ′

w · b dΩ

(1)

where b is the body force, t ([[u]]) is the traction field defined
from the displacement jump [[u]] across the interface ΓI within the
domain, and H1

0

(
Ω ′

)
is the standard Hilbertian-Sobolev space of

functions satisfying homogeneous Dirichlet boundary conditions
on the boundary of Ω .

Similarly, the formulation [9,11] and implementation [10,12] of
the Discontinuous Galerkin method can be found in the indicated
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