
SoftwareX 7 (2018) 222–225

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

From source code to publication: Code Diary, an automatic
documentation parser for SAS
Christiaan H. Righolt *, Barret A. Monchka, Salaheddin M. Mahmud
Vaccine and Drug Evaluation Centre, Department of Community Health Sciences, University of Manitoba, 337–750 McDermot Avenue, Winnipeg MB, R3E
0T5 Canada

a r t i c l e i n f o

Article history:
Received 15 December 2017
Received in revised form 16 May 2018
Accepted 11 July 2018

Keywords:
Documentation
Up-to-date
Parser
Comments
SAS
Code-publication match

a b s t r a c t

Team members do not always review, or understand, all source code and the decisions that are made
in it. Code developers and maintainers should have tools available to easily write, maintain, collate and
share source code documentation. Institutional security demands often limit the types of software that
researchers can install on their systems. It is, therefore, necessary to run a documentation tool natively
within programs that are already installed.WedevelopedCodeDiary, an automatic documentation parser
for SAS 9.3 and up. Code Diary provides a way to generate documentation natively from SAS source code.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Software metadata

Current software version 1.0.4
Permanent link to executables of this version https://github.com/VaccineAndDrugEvaluationCentre/code-diary-

sas/releases/tag/v1.0.4;
https://zenodo.org/record/1244766#.WvRli5dOmUk

Legal Software License GNU General Public License v3.0
Computing platform/Operating System Any system with SAS installed
Installation requirements & dependencies Requires SAS
If available Link to user manual - if formally published include a
reference to the publication in the reference list

N/A

Support email for questions VDEC@umanitoba.ca, issues on GitHub might be answered quicker

Code metadata

Current Code version v1.0.4
Permanent link to code/repository used of this code version https://github.com/ElsevierSoftwareX/SOFTX_2018_45
Legal Code License GNU General Public License v3.0
Code Versioning system used git
Software Code Language used SAS
Compilation requirements, Operating environments & dependencies None, only SAS
If available Link to developer documentation/manual N/A
Support email for questions VDEC@umanitoba.ca, issues on GitHub might be answered quicker

1. Introduction

Advances in technology since the mid-20th century have
resulted in a dramatic rise in the use of programmable computer

* Corresponding author.
E-mail addresses: Christiaan.Righolt@umanitoba.ca (C.H. Righolt),

Barret.Monchka@umanitoba.ca (B.A. Monchka), Salah.Mahmud@gmail.com
(S.M. Mahmud).

tools in scientific and medical research [1]. Most medical research
projects involve manipulating data using statistical (e.g., SAS, R,
Stata) or general-purpose programming languages (e.g., Python)
where often lengthy and complicated programs or scripts (source
code) are developed and maintained. Research teams working
on such projects have an internal division of labor. The content
experts and investigators responsible for research design, writing
papers and disseminating resultsmay not be developing the source

https://doi.org/10.1016/j.softx.2018.07.002
2352-7110/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2018.07.002
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.07.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/VaccineAndDrugEvaluationCentre/code-diary-sas/releases/tag/v1.0.4
https://github.com/VaccineAndDrugEvaluationCentre/code-diary-sas/releases/tag/v1.0.4
https://zenodo.org/record/1244766%23.WvRli5dOmUk
mailto:VDEC@umanitoba.ca
https://github.com/ElsevierSoftwareX/SOFTX%5F2018%5F45
mailto:VDEC@umanitoba.ca
mailto:Christiaan.Righolt@umanitoba.ca
mailto:Barret.Monchka@umanitoba.ca
mailto:Salah.Mahmud@gmail.com
https://doi.org/10.1016/j.softx.2018.07.002
http://creativecommons.org/licenses/by/4.0/

C.H. Righolt et al. / SoftwareX 7 (2018) 222–225 223

code, or even have the expertise to fully review it to ensure that
it matches the project requirements and achieves the research
objectives [2].

In this paper, we describe the software requirements, imple-
mentation and use of Code Diary, a documentation tool that au-
tomatically generates a report of what the code does, based on the
standard SAS comment structure.

2. Problems and background

Source code documentation provided by the code writer (often
a statistician, analyst, programmer or graduate student) is often the
onlywritten information available for future users andmaintainers
of the code. In our experience, source code documentation is also
often the only written information available to the rest of the
scientific team that would explain what was done to arrive at
the results. This documentation is typically a stand-alone docu-
ment that needs to be maintained and expanded continuously
to remain synchronized with the code. Programmers might also
make small decisions, e.g., how to handle missing values, without
remembering to include that in an external document andwithout
consulting the primary investigator. It is imperative that code
developers and maintainers have tools available to simplify the
tasks of writing, maintaining, collating and sharing source code
documentation. This enables the research team to be aware of all
decisions, including minor decisions, in the code and to adjust the
design of the code easily if required. It also makes it easier and
quicker to maintain code while simultaneously improving output
fidelity, directly increasing productivity. Source code documenta-
tion should be as close to the source code itself as possible, ideally
in the same repository. This lowers the barriers to write and locate
documentation. Documentation can then evolve, using standard
versioning and branching tools, and remain in sync with the rest
of the repository.

Several documentation tools (e.g., Doxygen, Haddock, JSDoc,
Sphinx, and Read the Docs) have been developed to support devel-
opers working with general-purpose languages. The programmer
uses certain conventions and keywords to document their code’s
routines and public interfaces (functionality, inputs and outputs,
error codes, etc.). They then run a program (essentially a code
parser) to extract and assemble the documentation text using a
pre-defined template. The results can then be output into a stan-
dard format (e.g., HTML, RTF or PDF) for sharing and publication.
Although sophisticated and elaborate, these tools are rarely suit-
able for use inmanydata-intensivemedical research projects. First,
existing tools are better at describing programming constructs
(e.g., interface signature, function parameters and return values)
than on documenting the decisions made during data preparation
and analysis that are needed to interpret the results correctly. It is
also common that research institutions limit the types of software
that can be installed on systems used for analyzing clinical data,
due to strict privacy and confidentiality rules and fear of security
breaches [3]. On such closed systems, it is not unusual to be limited
to the statistical analysis tools installed on the system. Faced by
this situation in our own work, we developed a documentation
tool that runs natively in one of our statistical analysis tools:
SAS.

3. Requirements

In discussions with programmers, data analysts and investiga-
tors, we agreed on the following requirements. The tool should:

1. run natively in SAS v9.3 (SAS Institute, Cary, North Carolina),
without any other dependencies. SAS is a data analysis
software suite, initially released in 1976, which is widely

used especially in medical research. A 2011 study estimated
that SAS was used in approximately 40% of health research
studies in the United States [4]. SAS does not have built-in
documentation facilities for user-written code.

2. generate its output using ahuman-readable non-proprietary
text format that can be converted afterwards into different
standard publishing formats such as Microsoft Word, HTML
or PDF.

3. automatically extract blocks of documentation from the
source file. Documentation blocks would be placed right
before the relevant code block to minimize maintenance
overhead as the programmer can easily update the docu-
mentation block to reflect changes made in the associated
code. Compared to maintaining the documentation block
in a separate document, this approach should increase the
chance that the programmer will remember to update the
documentation.

4. enable the organization of the resulting documentation in
a logical way, i.e., documentation blocks can be grouped
thematically regardless of their location in the code. For
instance, it should be possible to extract a list of all exclusion
and inclusion criteria of study subjects even if the source
code used to enforce these criteria is scattered in separate
files.

5. enable the programmer to exclude specific documentation
blocks (e.g., comments, reminders, task lists) fromappearing
in the final output.

6. make it easy to find the location of documentation back
in the source code. This will facilitate maintenance and
corrections of both the source code and its documentation.

4. Implementation

Our implementation consists of a languagewith a simple syntax
(the Code Diary language) and a generator tool that produces a
human-readable structured document containing the documenta-
tion.

4.1. Syntax and document structure

Code Diary syntax, loosely based on Doxygen syntax, is simple
and easy-to-learn as it uses standard SAS comment syntax [5]
allowing the user towrite both single line comments and comment
blocks. A Code Diary single line comment starts with ‘‘**’’ and ends
with ‘‘;’’ whereas a comment block starts with ‘‘/**’’ and ends with
‘‘*/.’’ The addition of the ‘‘*’’ to the standard SAS comment syntax is
what identifies a comment as a Code Diary comment.

A logically structured document is much more useful than a
collection of points in arbitrary order. To organize the comments
thematically, the user flags each comment as belonging to a spe-
cific section or subsection using the @section.subsection syntax,
entered as the first word in the comment. For example, a comment
flaggedwith ‘‘@methods.population.matching’’ would be placed in
the generated documentation under section Methods, subsection
Population and subsubsection Matching. In the generated docu-
ment, each Code Diary comment is formatted as a separate bullet
point. This is useful for succinct documentation that can be read
quickly and expanded easily into a full text methods section for a
report or manuscript. See below for directions to an example SAS
file with Code Diary comments.

4.2. Document generator

The document generator, implemented as a SAS macro, is in-
voked with the file path to the desired SAS script. The parser

Download English Version:

https://daneshyari.com/en/article/6964933

Download Persian Version:

https://daneshyari.com/article/6964933

Daneshyari.com

https://daneshyari.com/en/article/6964933
https://daneshyari.com/article/6964933
https://daneshyari.com

