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a b s t r a c t

Heterogeneous high-performance computing (HPC) systems offer novel architectures which accelerate
specific workloads through judicious use of specialized coprocessors. A promising architectural approach
for future scientific computations is provided by heterogeneous HPC systems integrating quantum
processing units (QPUs). To this end, we present XACC (eXtreme-scale ACCelerator) — a programming
model and software framework that enables quantum acceleration within standard or HPC software
workflows. XACC follows a coprocessor machine model that is independent of the underlying quantum
computing hardware, thereby enabling quantum programs to be defined and executed on a variety of
QPUs types through a unified application programming interface. Moreover, XACC defines a polymorphic
low-level intermediate representation, and an extensible compiler frontend that enables language in-
dependent quantum programming, thus promoting integration and interoperability across the quantum
programming landscape. In this work we define the software architecture enabling our hardware and
language independent approach, and demonstrate its usefulness across a range of quantum computing
models through illustrative examples involving the compilation and execution of gate and annealing-
based quantum programs.
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1. Introduction

High-performance computing (HPC) architectures continue to
make strides in the use of specialized computational accelerators,
and future HPC designs are expected to increasingly take advan-
tage of compute node heterogeneity [1]. Quantumprocessing units
(QPUs) represent a unique coprocessor paradigm which leverages
the information-theoretic principles of quantum physics for com-
putational purposes. Several small-scale experimental QPUs, in-
cluding the publicly available IBM quantum computer [2], already
exist and their sophistication, capacity, and reliability continues
to improve [3]. As a potential HPC accelerator, the emergence of
mature QPU technologies requires careful consideration for how to
best integrate these deviceswith conventional computing environ-
ments. While the hardware infrastructure for early QPUs is likely
to limit their usage to remote access models and state-of-the-art
HPC systems [4], there are clear use cases where hybrid algorithms
may judiciously leverage both conventional and quantum com-
putational resources for near-term scientific applications [5,6]. A
hybrid computing paradigm is poised to broadly benefit scien-
tific applications that are ubiquitous within research fields such
as modeling and simulation of quantum many-body systems [7],
applied numerical mathematics [8], and data analytics [9].

The generalization of HPC programming paradigms to include
new accelerators is not without precedent. Integrating graphical
processing units (GPUs) into HPC systems was also a challenge
for many large-scale scientific applications because of the funda-
mentally different way programmers interact with the hardware.
Hardware-specific solutions provide language extensions [10] that
enable programming natively in the local dialect. Hardware-
independent solutions define a hybrid programming specification
for offloadingwork to attached classical accelerators (GPUs, many-
integrated core, field-programmable gate array, etc.) in a man-
ner that masks or abstracts the underlying hardware type [11].
These hardware-agnostic approaches have proven useful because
they retain a wide degree of flexibility for the programmer by
automating those aspects of compilation that are overly complex.
Programming models for QPUs will pose additional challenges
because of the radically different logical features and physical
behaviors of quantum information, such as the no cloning principle
and reversible computation. Theunderlying technology (supercon-
ducting, trapped ion, etc.) and models (gate, adiabatic, topological,
etc.) will further distinguish QPU accelerators from conventional
computing devices. It is therefore necessary to provide flexible
classical–quantum programming models and integrating software
frameworks to handle the variability of quantum hardware to pro-
mote robust application benchmarking and program verification
and validation.

Approaches for interfacing domain computational scientists
with quantum computing have progressed over the last few years.
A variety of quantum programming languages have been de-
veloped with a similar number of efforts under way to imple-
ment high-level mechanisms for writing, compiling, and execut-
ing quantum code. State-of-the-art approaches provide embed-
ded domain-specific languages for quantum program expression.
Examples include the languages and tools from vendors such as
Rigetti [12], Microsoft [13], Google [14], and IBM [15], which
each enable assembly-level quantum programming alongside ex-
isting Pythonic code. Individually, these implementations provide
self-contained software stacks that optionally target the vendor’s
unique hardware implementation or simulator backend. The in-
creasing variability in languages and platforms raises concerns
for managing multiple programming environments and compi-
lation tool-chains. The current lack of integration between soft-
ware stacks increases application development time, decreases
portability, and complicates benchmarking analysis. Methods that

enable cross-compilation for QPUswill support the broad adoption
of experimental quantum computing through faster development
time and reusable code.

To address these unique challenges, we present a program-
ming model and extensible compiler framework that integrates
quantum computing devices into an accelerator-based execution
model. The eXtreme-scale ACCelerator (XACC) framework is de-
signed for robust and portable QPU-accelerated application pro-
gramming by enabling quantum language and hardware inter-
operability. XACC defines interfaces and abstractions that enable
compilation of hybrid programs composed of both conventional
and quantum programming languages. The XACC design borrows
concepts from existing heterogeneous programming models like
OpenCL [11] by providing a hardware-independent interface for
off-loading quantum subroutines to a quantum coprocessor.More-
over, XACC enables language interoperability through a low-level
quantum intermediate representation.

The structure of this work is as follows: first, we present related
work with regards to quantum programming and detail inherent
unique challenges that XACC seeks to address; second, we define
the XACC software architecture, including platform, programming,
and memory models; finally, we detail unique demonstrations of
themodel’s flexibility through demonstrations using both gate and
annealing quantum computing models.

2. Related Work

Programming, compilation, and execution of quantum pro-
grams on physical hardware and simulators has progressed rapidly
over the last few years. During this time, much research and
development has gone into exploring high-level programming
languages and compilers [16–19]. Moreover, there has been a
recent surge in the development of embedded domain specific lan-
guages that enable high-level problem expression and automated
reduction to low-level quantum assembly languages [12,14,15].
However, despite progress there are still numerous challenges that
currently impede adoption of quantum computing within existing
classical scientific workflows [20]. Most approaches that target
hardware executions are implemented via Pythonic frameworks
that provide data structures for the expression of one and two
qubit quantum gates; essentially providing a means for the pro-
gramming of low-level quantum assembly (QASM). Compiler tools
provided as part of these frameworks enable the mapping of an
assembly representation to a hardware-specific gate set as well
as mapping logical to physical connectivity. The arduous task of
complex compiler workflow steps, including efficient instruction
scheduling, routing, and robust error mitigation are left as a man-
ual task for the user. This hinders broad adoption of quantum
computation by domain computational scientists whose expertise
lies outside of quantum information.

Higher-level languages exist, but do not explicitly target any
physical hardware. Therefore, users can compile these high-level
languages to a representative quantum assembly language, but
such instructions must be manually mapped to the set of instruc-
tions specified by a given hardware gate set. This translation pro-
cess is often performed by re-writing the assembly code in terms
of a Pythonic execution frameworks targeting a specific device.
Moreover, high-level languages have in the past assumed a fault-
tolerant perspective of quantum computation. However, this inter-
pretation is at odds with practical near-term noisy computations,
for which the usermust provide robust compilation tools to enable
a variety of errormitigation strategies. To this end, domain specific
languages enabling problem expression at higher levels of ab-
straction [21–23] for non-fault-tolerant quantum computing have
recently been developed. These represent promising pathways for
enabling a broad community of computational scientists to benefit
from quantum computation.
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