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a b s t r a c t

The degree of relaxation in any glass sample is a governing property in every property of the glass. It
plays an important role in every major glass product commercially available, but has required individual
groups to develop their own relaxation codes. RelaxPy is a Python-based script designed to be used in
a Python interpreter or Linux terminal. Given an input temperature path and set of material properties
including the nonequilibrium viscosity parameters, RelaxPy returns the evolution of the composite fictive
temperature, viscosity, and relaxation time. Optionally, the software can also return the individual values
of the fictive temperature components using a Prony series fit to approximate the stretched exponential
relaxation form. RelaxPy aims to provide a flexible, open-source framework for glass relaxationmodeling
where new advances in glass physics can be easily incorporated and shared with the community.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

Glasses are inherently nonequilibrium materials that sponta-
neously relax toward the metastable supercooled liquid state [1].
The functional form for glass relaxation dates back to 1854 when
Kohlrausch [2] fit the residual charge of a Leyden jar with

g(t) = g(0) exp[−(t/τ )β ], (1)

where t is time, τ is the relaxation time constant,β is the stretching
exponent, and g(t) is some property that is effected by relaxation
(e.g., volume, conductivity, viscosity, etc.); Eq. (1) is referred to as
the stretched exponential relaxation function (SER). The stretching
exponent is bounded from 0 < β ≤ 1, where the upper limit (β =

1) represents a simple exponential decay and fractional values of
β represent stretched exponential decay with a fat tail [3,4].

For over a century the physical origin of the stretched exponen-
tial relaxation form was one of the greatest unsolved problems in
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physics, until 1982 when Grassberger and Proccacia were able to
derive the general form based on a model of randomly distributed
traps that annihilate excitations and the diffusion of the excitations
through a network [5]. This model, however, provided no physical
meaning for β , which was still treated as an empirical fitting
parameter. In 1994, Phillips was able to extend the diffusion trap
model by showing that at high temperatures β = 1 and at low
temperatures the stretching exponent can be derived based on the
effective dimensionality of available relaxation pathways [6]. He in
turn expressed the stretching exponent

β =
fd

fd + 2
, (2)

where d is the dimensionality of the network and f is the fraction
of relaxation pathways available. He then proposed a set of ‘magic’
numbers for common scenarios. Assuming a three dimensional
network with all pathways activated (d = 3, f = 1), a value
of β = 3/5 is obtained. The second case is a three dimensional
network with only half of the relaxation pathways activated (d =

3, f = 1/2) yielding a value of β = 3/7. A third magic value β =
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1/2 was found for a two dimensional technique with all pathways
activated (d = 2, f = 1). β = 3/5 occurs for stress relaxation of
glasses under a load, because both long and short range activation
pathways are activated, whereas a value of β = 3/7 is obtained for
structural relaxation of a glass without an applied stress. The value
was confirmed by Welch et al. [7] when the value was measured
over a period of 1.5 years at more than 600 ◦C below the glass
transition temperature of Corning Gorilla Glass R⃝.

Due to the fundamental nature of glass being a nonequilibrium
material, classical reversible thermodynamics cannot describe sys-
tems of glass networks [3,7–13]. To account this problem, an extra
thermodynamic variable (or order parameter), called fictive tem-
perature (Tf ) is used [4,8,14,15]. Early research on relaxation in
glasses dates back to the work of Tool and Eichlin in 1932, and Tool
in 1946 whose works originally proposed a temperature at which
a glass system could be in equilibrium without any atomic rear-
rangement [16,17]. Tool suggested that this fictive temperature
(Tf ) was sufficient to understand the thermodynamics of a glassy
system. Originally the fictive temperature was treated as a single
value that was some function of thermal history (Tf [T (t)]) [16,17];
however, subsequent experiments have shown that the concept of
a singular fictive temperature is inadequate [4].

A key experiment was performed by Ritland in 1956 [18]. Rit-
land took several samples with different thermal histories but the
same measured fictive temperature; thus, based on Tool’s equa-
tion, both should have had identical relaxation properties. Ritland,
however, showed that the refractive index evolved differently be-
tween samples. To account for these differences, Ritland proposed
the use of multiple fictive temperatures [18]. This experiment
showed that materials held isothermally at their fictive temper-
atures with varying thermal histories can give varying results for
the relaxation of a given property (Tf (T )) [16–19]. Thus as a glass
network relaxes (atoms shifting toward equilibrium positions) the
fictive temperature will also shift [4,7–9]. Narayanaswamy was
able to apply Ritland’s concept in a highly successful engineering
model, but the physical meaning of multiple fictive temperatures
remained elusive [19].

The current state-of-the-art in modeling of glass relaxation be-
havior considers a weighted average of the fraction of the network
(wi) that is associated with a given fictive temperature component
(Tfi) [8] given by

Tf =

N∑
i=1

wiTfi. (3)

The values for wi are defined by a Prony series approximation [4]
of Eq. (1)

exp(−xb) ≃

N∑
i=1

wi exp(−Kix), (4)

in order to make the differentials analytically solvable (the fitting
method is described by Mauro and Mauro [4]. This leads to a set
of N coupled differential equations that represent the change in
fictive temperature as a function of thermal history as expressed
by:
dTfi
dt

=
T (t) − Tfi(t)
τi[T (t), Tf (t)]

, i = 1...N. (5)

The relaxation time of each component (τi[T (t), Tf (t)]) is a func-
tion composition, temperature, and thermal history and is given by

τi(T , Tf ) =
τk(T , Tf )

Ki
. (6)

Ki is a factor that comes from the Prony series approximation of
the SER function [4] and τk(T , Tf ) is the common relaxation factor

scaled by the Maxwell relation,

τk(T , Tf ) =
η(T , Tf )

Ks
(7)

where Ks is the shear modulus and is typically treated as a fit-
ting parameter. The η(T , Tf ) function from Eq. (7) is the non-
equilibrium viscosity [13] as given by the Mauro–Allan–Potuzak
non-equilibrium viscosity model (MAP equation) and is given by

log10η(Tf , T ) = xlog10ηeq(Tf ) + (1 − x)log10ηne(T , Tf ) (8)

where ηeq(Tf ) is the equilibrium viscosity given by the MYEGA
equation for equilibrium viscosity, ηne(T , Tf ) is the nonequilibrium
contribution to viscosity, and x is an ergodicity parameter defined
by

x =

(
min(T , Tf )
max(T , Tf )

)p

. (9)

Here, p is a constant related to the glass transition range and rep-
resents how sharply the ergodicity breaks down; it scales linearly
with fragility. The final part of the equation is the nonequilibrium
contribution to viscosity [13],

log10ηne(T , Tf ) = A +
∆H

k ln 10

−
S∞

k ln 10
exp[−

Tg
Tf

(
m

12 − log10η∞

)]. (10)

The values forA, ∆H
k ln 10 , η∞, and p are all default values (that can also

be specified if desired) while the fragility (m), the glass transition
temperature (Tg ), and S∞

k ln 10 are all inputs to the code. The values
and the calculations of these parameters are further discussed in
Guo et al. [8].

2. Software description

RelaxPy script is written using Python syntax and relies on the
numpy, scipy, and matplotlib libraries. It is designed to be run
within a Linux terminal with command line options or inside a
Python interpreter. It can be used by calling the name of the script,
followed by the input file, the desired output file name, and finally
an optional tag for all fictive components to be displayed as well as
printed to a specified output file (formatted as comma separated
values).

2.1. Software architecture

The RelaxPy package consists of an algorithm that iterates over
time in order to determine the values of viscosity (η), relaxation
time (τ ), and the current fictive temperature (Tf ) given the user-
supplied thermal history and material property values. The pur-
pose of this code is to enable calculation of the relaxation behav-
ior’s change over time by using the set of differential equations
shown in Eq. (5), using only easily-attainable parameters.

Eq. (5) is solved for each term in the Prony series finding the
change in each Tfi component for a given time (t). The program
then iterates over the entire thermal history of the sample using a
user-specified time step dt , allowing for calculation of the overall
fictive temperature over time, as shown in Eq. (3). The values for
the wi and Ki are taken from the database originally generated by
Mauro andMauro [4]with their hybrid fittingmethod based on the
number of terms in the desired Prony series and the magic value
chosen from Phillips [6]. The thermal history is also defined in
the original input file using linear interpolation (an example input
file can be found the illustrative examples section); an example is
shown in Fig. 1. The initial fictive temperature components are
assumed to be at equilibrium (Tfi = T (0)).
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