
SoftwareX 6 (2017) 278–284

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

JDFTx: Software for joint density-functional theory
Ravishankar Sundararaman a,*, Kendra Letchworth-Weaver b, Kathleen A. Schwarz c,
Deniz Gunceler d, Yalcin Ozhabes d, T.A. Arias d

a Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
b Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, United States
c National Institute of Standards and Technology, Material Measurement Laboratory, Gaithersburg, MD, 20899, United States
d Department of Physics, Cornell University, Ithaca, NY 14853, United States

a r t i c l e i n f o

Article history:
Received 13 August 2017
Received in revised form 17 October 2017
Accepted 18 October 2017

Keywords:
Density functional theory
Electronic structure
Solvation
Electrochemistry
Light-matter interactions

a b s t r a c t

Density-functional theory (DFT) has revolutionized computational prediction of atomic-scale properties
from first principles in physics, chemistry andmaterials science. Continuing development of newmethods
is necessary for accurate predictions of new classes of materials and properties, and for connecting to
nano- and mesoscale properties using coarse-grained theories. JDFTx is a fully-featured open-source
electronic DFT software designed specifically to facilitate rapid development of new theories, models and
algorithms. Using an algebraic formulation as an abstraction layer, compact C++11 code automatically
performs well on diverse hardware including GPUs (Graphics Processing Units). This code hosts the
development of joint density-functional theory (JDFT) that combines electronic DFT with classical DFT
and continuummodels of liquids for first-principles calculations of solvated and electrochemical systems.
In addition, the modular nature of the code makes it easy to extend and interface with, facilitating
the development of multi-scale toolkits that connect to ab initio calculations, e.g. photo-excited carrier
dynamics combining electron and phonon calculations with electromagnetic simulations.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.3.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_SOFTX-D-17-00063
Legal Code License GPLv3
Code versioning system used git
Software code languages, tools, and services used C++11, MPI, CUDA
Compilation requirements, operating environments & dependencies GSL, BLAS, LAPACK and FFTW libraries on a POSIX-compliant platform
Link to developer documentation/manual http://jdftx.org
Support email for questions sundar@rpi.edu

Software metadata

Current software version 1.3.1
Permanent link to executables of this version https://github.com/ElsevierSoftwareX/SOFTX_SOFTX-D-17-00063
Legal Software License GPLv3
Computing platforms/Operating Systems POSIX-compliant platform (Linux, Unix, OS X, Windows/Cygwin etc.)
Installation requirements & dependencies MPI C++11 compiler; GSL, BLAS, LAPACK and FFTW libraries
Link to user manual http://jdftx.org
Support email for questions sundar@rpi.edu

* Corresponding author.
E-mail address: sundar@rpi.edu (R. Sundararaman).

https://doi.org/10.1016/j.softx.2017.10.006
2352-7110/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2017.10.006
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX%5FSOFTX-D-17-00063
http://jdftx.org
mailto:sundar@rpi.edu
https://github.com/ElsevierSoftwareX/SOFTX%5FSOFTX-D-17-00063
http://jdftx.org
mailto:sundar@rpi.edu
mailto:sundar@rpi.edu
https://doi.org/10.1016/j.softx.2017.10.006
http://creativecommons.org/licenses/by/4.0/


R. Sundararaman et al. / SoftwareX 6 (2017) 278–284 279

1. Motivation and significance

Density functional theory (DFT) enables computational predic-
tion of material properties and chemical reactions starting from a
quantum mechanical description of the electrons. DFT codes are
now widely used to understand and design new materials from
first principles through the prediction of electronic properties,
structures and dynamics of molecules, solids and surfaces. Such
studies commonly employ proprietary software such as GAUS-
SIAN [1] and VASP [2] as well as open-source software such as
Quantum Espresso [3], ABINIT [4] and Qbox [5], to name just a
few.1

However, DFT offers limited accuracy for certain classes of
materials and properties [6], and is extremely computationally
expensive for amorphousmaterials, liquids andnanostructures [7].
The study of new systems, as soon as they become technologically
and scientifically relevant, requires continual development of new
methods to improve the accuracy of DFT and incorporate it into
multi-scale theories to access higher length scales. Developing
and testing such methods within production codes is extremely
challenging and time consuming.

Systems involving liquids, such as electrochemical interfaces or
solvated biomolecules, are particularly challenging for DFT calcula-
tions, requiring thermodynamic sampling of several thousands of
atomic configurations in ab initiomolecular dynamics (AIMD) sim-
ulations [8]. Joint density-functional theory (JDFT) was proposed
as a theoretical framework to address this issue by combining
electronic DFT with classical DFT of liquids [9] to directly com-
pute equilibrium properties of quantum-mechanically described
solutes in diverse solvent environments [10]. Bringing this method
to fruition required the simultaneous development of physical
models (free energy functionals) of liquids and their interaction
with electrons, algorithms to perform variational free-energymin-
imization and code that tightly and efficiently coupled these new
models with electronic DFT. We began the open-source software
project JDFTx in 2012 to facilitate this combined model, algorithm
and code development effort.

This article introduces JDFTx as a general-purpose user-friendly
DFT software that offers a full feature set, yet is simultaneously
developer-friendly to enable rapid prototyping of new electronic-
structure and related methods. Section 2 presents the overall de-
sign of JDFTx using the algebraic formulation of DFT [11,12] to sep-
arate implementation into physics, algorithm and hardware layers,
enabling rapid development of high-performance code that is easy
to use. It also outlines commonly used features of the code, some
of which are illustrated in more detail with examples in Section
3. Finally, Section 4 highlights new methods that have already
been developed using JDFTx, including a hierarchy of JDFT models
for the electronic structure of solvated systems and a toolkit for
photo-excited carrier dynamics with ab initio electron and phonon
properties, as well as key applications of these methods.

2. Software description

The core functionality of any electronic DFT software includes
the calculation of ground-state electron densities, energies and
forces within the Kohn–Sham DFT formalism [13], given a list of
atoms and their positions. This facilitates prediction of structure
and dynamics of materials, evaluation of reaction pathways and
chemical kinetics, as well as determination of phase equilibria and
stability.

1 Certain commercial software codes are identified in this paper to foster un-
derstanding. Such identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it imply that the
materials or equipment identified are necessarily the best available for the purpose.

Due to the nature of quantum-mechanical simulations of mat-
ter, DFT calculations become increasingly expensivewith the num-
ber of atoms and electrons involved; computational complexity
ranges from O(N3) (with a smaller prefactor) to O(N) (with a much
larger prefactor), depending on the implementation. A brute force
approach to nano and mesoscale systems with several thousands
to millions of atoms is therefore not practical; it is instead logical
to develop multi-scale theories for the properties of interest while
still incorporating DFT electronic structure where appropriate.

JDFTx is an open-sourceDFT software designed specificallywith
the goals of coupling electronic DFT with coarse-grained theories
to bridge atomic and system length scales, and of facilitating the
rapid development of new classes of such combined theories. It
implements electronic DFT in the plane-wave basis, which is best
suited for periodic systems such as solids and solid surfaces, but is
also applicable to molecular systems. A key functionality of JDFTx
beyond standard electronicDFT codes is themodeling of liquids us-
ing classical DFT [12], and JDFT calculations of electronic structure
in liquid environments by combining electronic DFT with classical
DFT or simpler solvation models. Section 2.1 presents a birds-
eye view of the code architecture along with a code example to
illustrate the ease of developing new features, after which Section
2.2 outlines the key features of the code.

2.1. Software architecture

JDFTx achieves its goal of code simplicity and extensibility by
using the ‘DFT++’ algebraic formulation of electronic DFT [11] and
its generalization to classical DFT and JDFT [12]. This algebraic
formulation cleanly separates the code into physics, algorithm
and computational layers. Theories and algorithms are expressed
concisely at a high-level of abstraction in the top layers of the code,
whereas performance optimizations and support for specialized
hardware such as GPUs are handled in the lower layers.

We illustrate this clean separation with an example of a simpli-
fied solvation model defined by

− 4πρ(r⃗) = ∇ · (ϵ(r⃗)∇φ(r⃗)), and (1)

Adiel =
1
2

∫
dr

[
φ(r⃗)− K̂ρ(r⃗)

]
ρ(r⃗). (2)

Here, the liquid is treated as an inhomogeneous dielectric ϵ(r⃗)
which interacts with the charge density of the electronic system,
ρ(r⃗). The net electrostatic potential φ(r⃗) satisfies the modified
Poisson equation (1), and the electrostatic solvation energy Adiel
is the difference between the dielectric-screened and unscreened
electrostatic self energies of ρ(r⃗) (2), where K̂ is the unscreened
Coulomb operator. This is the essence of most solvation models
used with DFT [14–17]; we have only skipped the determination
of ϵ(r⃗) from atom positions or electron densities, and additional
non-electrostatic correction terms in Adiel for brevity. Regardless,
solving the Poisson equation above is the most complex and time-
consuming operation in these solvation models.

Listing 1 shows the implementation of this model in JDFTx.
Class LinearPCM derives from a templated abstract base class
LinearSolvable, which implements the Conjugate Gradients (CG)
algorithm [18] on arbitrary vector spaces, instantiated in this case
for scalar fields in reciprocal space, ScalarFieldTilde. The equation
to be solved is defined by the virtual function hessian, whose one-
line implementation can be recognized as (1) at amoment’s glance.
Note that the gradient (∇) and divergence (∇·) operators apply in
reciprocal space (where they are diagonal), while the operators
I and J Fourier transform from reciprocal to real space and vice
versa [11] (using Fast Fourier Transforms). The function getAdiel
first calls function solve from base class LinearSolvable to solve (1)
for φ(r⃗) stored in a member variable state of the base class, and the
second line evaluates Adiel using (2). The integral is evaluated as a



Download	English	Version:

https://daneshyari.com/en/article/6964961

Download	Persian	Version:

https://daneshyari.com/article/6964961

Daneshyari.com

https://daneshyari.com/en/article/6964961
https://daneshyari.com/article/6964961
https://daneshyari.com/

