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a b s t r a c t

Iterative Feedback Tuning constitutes an attractive control loop tuning method for processes in the
absence of process insight. It is a purely data driven approach for optimization of the loop performance.
The standard formulation ensures an unbiased estimate of the loop performance cost function gradient,
which is used in a search algorithm for minimizing the performance cost. A slow rate of convergence of
the tuningmethod is often experiencedwhen tuning for disturbance rejection. This is due to a poor signal
to noise ratio in the process data. A method is proposed for increasing the data information content by
introducing an optimal perturbation signal in the tuning algorithm. The theoretical analysis is supported
by a simulation example where the proposed method is compared to an existing method for acceleration
of the convergence by use of optimal prefilters.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Control design and tuning for disturbance rejection is one of
the classical disciplines in control theory and control engineering
science. Design of compensators for disturbance rejection is well
documented (Åström, 1970; Åström & Hägglund, 1995; Box &
Jenkins, 1970). Given a particular control design, the tuning of
the control parameters can be conducted based on tuning rules
or by minimization of some loop performance criterion. Given a
model of the system, the set of optimal control parameters which
minimize the performance cost can be evaluated. In the absence of
a sufficiently reliable model, the tuning can be performed based
on data obtained from the loop, by a data driven optimization.
Iterative Feedback Tuning is a method for optimizing control
parameters using closed loop data, which forms the basis for
the modifications presented here. The basic algorithm was first
presented in Hjalmarsson, Gunnarsson, and Gevers (1994) and
has since then been analyzed, extended and tested in a number
of papers. For an extensive overview of the development of
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the method and references to applications, see Gevers (2002),
Hjalmarsson (2002) and Huusom (2008). Alternative data driven
tuning algorithms are Correlation based Tuning (Karimi, Mišković,
& Bonvin, 2003, 2004) and Virtual Reference Feedback Tuning
(Campi, Lecchini & Savaresi, 2002; Lecchini, Campi, & Savaresi,
2002).

The performance criterion, FN(yt , ut), used in the controller
tuning is a function of the output and the control action. Hence
it is a function of the true system, the controller and external
signals acting on the loop. We will use the set-up in Fig. 1,
where G is a causal scalar linear time-invariant system, C is
the controller, which also is assumed to be causal scalar linear
time-invariant, and where rt is the reference signal and vt is
the disturbance, respectively. Assuming, as we will, that the
disturbance is stochastic implies that the performance cost is itself
a random variable. However, as in, e.g., LQG-control, it is natural to
minimize the expected cost

F(·) , E [FN(·)] (1)

where E[·] is the mathematical expectation over the random
disturbances acting on the closed loop system. Notice that in the
following, when expectation of F(·) is taken, the expectation does
not refer to the random disturbances acting on the system when
assessing the closed loop performance. Instead it refers to the
randomvariables that have affected the experimental data that has
been used to design the controller for which the performance of
F(·) is to be assessed.
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Fig. 1. A general feedback loop designed for disturbance rejection. The process,
G, and the compensator in the feedback loop, C , is given as scalar linear transfer
functions.

Our objective is to design a controller such that F is minimized
when rt ≡ 0, i.e. we are interested in disturbance rejection.
Adding a reference signal during the experimentation phase may
however improve the quality of the obtained controller C . In
Iterative Feedback Tuning, one tries to minimize F with respect to
the controller using noisy closed loop experiments. The accuracy
of this design very much depends on the shape of the cost function
F one tries to minimize. Any change in the spectrum Φr of the
reference signal, will affect the output spectrum Φy and the input
spectrum Φu. Hence the reference signal spectrum affects the
minimum and the shape of the performance cost surface. By
designing the spectrum of an external reference it is consequently
possible to shape the performance cost function in order to
improve the convergence properties of the search algorithm.
However, one has to bear in mind that shaping the cost function
will also influence the location of the minimum in the controller
parameter space. Despite this unfortunate consequence, successful
simulation studies are reported with respect to convergence using
Iterative Feedback Tuningwith external perturbation,when tuning
for disturbance rejection (Huusom, Poulsen, & Jørgensen, 2009).

1.1. Formulating a design criterion

Let F(ρ, ϑ) denote the cost function that we are interested in
minimizing, where ρ and ϑ represent the free control parameters
which are to be tuned and a set of parameters which characterize
the reference signal spectrum, respectively. The objective is to find
the optimal ρ for a given ϑ = ϑ0, where ϑ0 corresponds to rt ≡ 0.
We denote the optimum ρ by ρ̄(ϑ), indicating its dependence on
ϑ. Since the system will be affected by noise it is only possible
to obtain a minimizer, ρ̂n(ϑ), with a certain accuracy; we use
subscript n to denote that n iterations are performed in the tuning
method. Hence Iterative Feedback Tuning will produce a solution
with the following error

Σn(ϑ) , E


ρ̂n(ϑ) − ρ̄(ϑ)
 

ρ̂n(ϑ) − ρ̄(ϑ)
T

. (2)

Using a continuity argument it may therefore be advantageous
to optimize ρ for a ϑ ≠ ϑ0, i.e. it may be that the con-
troller corresponding to ϑ may result in a smaller expected cost
for the desired excitation conditions (which correspond to ϑ0)
than the controller tuned with the desired operating conditions
ϑ0 i.e. E


F(ρ̂n(ϑ), ϑ0)


< E


F(ρ̂n(ϑ

0), ϑ0)

Our objective is

to determine operating conditions ϑ such that E

F(ρ̂n(ϑ), ϑ0)


is minimized. This is a difficult problem since F(ρ̂n(ϑ), ϑ0) is a
complicated and non-linear function of the random disturbances
originating from the experiments on which ρ̂n(ϑ) is based. This in
turnmeans that the expectationwith respect to these randomvari-
ables is difficult to compute. Our approach to cope with this is to
perform a local analysis, assuming ϑ to be close to ϑ0. Using Taylor
expansion to second order near the optimum gives

F(ρ̂n(ϑ), ϑ0) ≈ F(ρ̄(ϑ0), ϑ0)

+
1
2
Tr


∂2F(ρ̄(ϑ0), ϑ0)

∂ρ2


ρ̂n(ϑ) − ρ̄(ϑ0)

 
ρ̂n(ϑ) − ρ̄(ϑ0)

T
.

By taking the expectation and rearranging using Eq. (2) it is seen
that

E

F(ρ̂n(ϑ), ϑ0)


− F(ρ̄(ϑ0), ϑ0)

≈
1
2
Tr


∂2F(ρ̄(ϑ0), ϑ0)

∂ρ2


ρ̄(ϑ) − ρ̄(ϑ0)

 
ρ̄(ϑ) − ρ̄(ϑ0)

T
+

1
2
Tr


∂2F(ρ̄(ϑ0), ϑ0)

∂ρ2
Σn(ϑ)


, 1Fn(ϑ). (3)

Now, if the covariance, Σn(ϑ), can be evaluated then 1Fn(ϑ) is a
quantity that can be minimized with respect to ϑ in order to find
the (approximately) optimal (reference) perturbation signal spec-
trum to be used in the experiments when tuning the controller
parameters ρ using Iterative Feedback Tuning. The two terms in
1Fn(ϑ) canbe interpreted as follows: The first term is the bias error
due to that ϑ ≠ ϑ0 is used in the optimization whereas the second
term is the variance error incurred on F(ρ̂n(ϑ), ϑ0). The bias error
will typically increase as ϑ moves away from ϑ0. As noted above,
it may be possible to decrease the variance error if ϑ is suitably
chosen. The optimal perturbation choice ϑ = ϑ̄ will balance these
two terms. The aim of this study is to construct a systematic and
formal algorithm for designing an optimal external perturbation
signal for Iterative Feedback Tuning for the disturbance rejection
problem based on (3).

The paper is organized as follows: Section 2 presents the basic
Iterative Feedback Tuning algorithm for disturbance rejection and
the error Σn(ϑ) of the method derived in Hildebrand, Lecchini,
Solari, and Gevers (2005b). In Section 3 the effect of adding an
external perturbation signal to the loop in the tuning method
is analyzed. In Section 4, a formal design criterion for the
perturbation spectrum in Perturbed Iterative Feedback Tuning
is derived. Finally a simulation example serves to illustrate the
advantages of introducing optimal external perturbation when
tuning the loop for disturbance rejection.

2. Iterative feedback tuning for disturbance rejection

The Iterative Feedback Tuning algorithm for disturbance
rejection is illustrated in the following Hjalmarsson, Gevers,
Gunnarsson, and Lequin (1998). The feedback loop in Fig. 1 depicts
the signals and transfer functions which are used in the algorithm
for tuning the parameters ρ in C . The objective is minimization of
the cost function:

F(ρi) =
1
2N

E


N−

t=1

(yt(ρi) − ydt )
2
+ λ(ut(ρi))

2


(4)

where N is the number of discrete time data points and yd =

0 is the desired output response for disturbance rejection. The
sensitivity of the cost function with respect to the control
parameters is

J(ρi) =
1
N
E


N−

t=1

yt(ρi)
∂yt(ρi)

∂ρ
+ λut(ρi)

∂ut(ρi)

∂ρ


. (5)

The minimization is realized by iterating in the scheme

ρi+1 = ρi − γiR−1
i J(ρi) (6)

where Ri is a positive definite matrix typically chosen as the Hes-
sian of the cost function with respect to the control parameters. If
a model for the system is unknown, the gradients of the input and
output and hence the cost function gradient cannot be evaluated
analytically. In the traditional Iterative Feedback Tuning frame-
work the minimization of the cost function, (4), is based on data
from two successive experiments:
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