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A B S T R A C T

Surrogate safety measures have been advocated as a complementary approach to study safety from a broader
perspective than relying on crash data alone. This study proposes an approach to incorporate different surrogate
safety measures in a unified framework for road safety estimation within the bivariate extreme value theory
framework. The model structure, model specification, threshold selection method, and parameter estimation
method of the bivariate threshold excess model are introduced. Two surrogate safety measures, post en-
croachment time (PET) and length proportion of merging (LPM), are chosen to characterize the severity of
merging events on freeway entrance merging areas. Based on the field data collected along Highway 417 in the
City of Ottawa, Ontario, Canada, the bivariate modelling methods with seven distribution functions are applied
and compared, and the model with logistic distribution function is selected as the best model. The best bivariate
models’ estimation results are then evaluated by comparing them to their two marginal (univariate Generalized
Pareto distribution) models. The results show that the bivariate models tend to generate crash estimates that are
much closer to observed crashes than univariate models. A more important finding is that incorporating two
surrogate safety measures into the bivariate models can significantly reduce the uncertainty of crash estimates.
The efficiency of a bivariate model is not evidently better than either of its marginal models, but it is expected to
be improved with data of a prolonged observation period. This study is also a step forward in the direction of
developing multivariate safety hierarchy models, since models of the safety hierarchy have been predominantly
univariate.

1. Introduction

Utilizing surrogate safety measures for road safety analysis has been
gaining popularity in recent years (Zheng et al., 2014a). A surrogate
safety measure should be based on observable non-crash events that are
physically related to crashes and can be converted into crash frequency
and/or severity using practical methods (Tarko et al., 2009). Several
surrogate safety measures that satisfy previous conditions have been
proposed in the literature, and examples include time to collision (TTC),
post encroachment time (PET) and proportion of stopping distance
(Gettman and Head, 2003; Laureshyn et al., 2016). Although previous
studies assumed that one single measure is sufficient to classify all
traffic events in a meaningful way, different measures inherently re-
present partial severity aspects of traffic events, and integrating all
these sources of information is a promising way to gain more compre-
hensive understanding on the underlying level of safety (Ismail et al.,
2011; Zheng et al., 2014a). This study makes an explorative attempt in
this regard. Different from previous studies, e.g., Ismail et al. (2011), in

which several conflict indicators were integrated by a mapping function
to generate an index of severity, this study develops a model to utilize
different surrogate safety measures and the same model can be utilized
to generate crash counts. Specifically, crashes are modeled as extremes
of traffic events that are characterized by the joint behavior of two
surrogate safety measures within the multivariate extreme value theory
framework.

2. Background

Extreme Value Theory (EVT) provides models and techniques to
enable extrapolation from observed levels to unobserved levels of a
stochastic phenomenon. For example, it is vital to ensure that a bridge
is protected against flood events that it is likely to experience within its
projected life span, e.g., 100 years. Local data could record daily water
levels including minor flood events for a short period, e.g., 10 years.
The EVT enables the estimation of the occurrence of the extreme flood
event over the next 100 years (100-year flood) given the 10-year

https://doi.org/10.1016/j.aap.2018.08.004
Received 31 January 2018; Received in revised form 1 August 2018; Accepted 2 August 2018

⁎ Corresponding author.
E-mail address: tsayed@civil.ubc.ca (T. Sayed).

Accident Analysis and Prevention 120 (2018) 83–91

0001-4575/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00014575
https://www.elsevier.com/locate/aap
https://doi.org/10.1016/j.aap.2018.08.004
https://doi.org/10.1016/j.aap.2018.08.004
mailto:tsayed@civil.ubc.ca
https://doi.org/10.1016/j.aap.2018.08.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aap.2018.08.004&domain=pdf


history. This idea can readily meet a practical need of surrogate safety
measures that are sought to utilize observable more frequent non-crash
events to predict rarely occurred crashes.

With the development of surrogate safety measures, the EVT ap-
proach is introduced to connect non-crash events to crashes in early
seminal studies (Songchitruksa, 2004; Songchitruksa and Tarko, 2006;
Tarko, 2012). The authors concluded the advantages of the EVT ap-
proach as abandoning the assumption of fixed crash-to-surrogate ratio
and no need of crash data in the model estimation process. Other work
also made contributions in this area. Gordon et al. (2013) used the EVT
approach to estimate the road departure crash frequency based on the
surrogate safety measure of time to road edge crossing, and they found
reasonable crash estimates compared to the observed crash data. Zheng
et al. (2014b) used the EVT approach to estimate safety related to lane
changing maneuver on freeways. They also suggested that the EVT
fitted well within the safety continuum and thus developed a para-
metric safety continuum model using this theory (Zheng et al., 2014c;
Zheng and Ismail, 2017). Zheng et al. (2016) also employed the EVT
approach to determine the PET thresholds that distinguish traffic con-
flicts from non-conflict events. Åsljung et al. (2016, 2017) used the EVT
approach to validate the safety level of vehicles and they implied that
the EVT approach was promising in safety analysis related to autono-
mous vehicles. In a recent study, Farah and Azevdo (2017) employed
the EVT approach to analyze the safety of passing maneuvers on two-
lane rural highways.

Using the EVT approach for road safety analysis has been so far
mainly limited to univariate models, by which crashes are estimated as
extremes of a single surrogate safety measure. Jonasson and Rootzén
(2014) introduced the bivariate block maxima modeling methods to
investigate whether the near-crashes are representative of the crashes in
naturalistic driving study. They used surrogate safety measure (TTC)
and an explanatory variable (nine variables as max speed, min distance
left lane marking, etc. were tested separately) combined in the crash
estimation process. In contrast to the rare application in the road safety
area, the bivariate/multivariate extreme value models have been used
in multidisciplinary areas, as drought or flood prediction in hydrology
(Yue, 2001; Hamdi et al., 2016), financial crisis prediction in finance
(Cumperayot and Kouwenberg, 2013), and failure risk prediction in
structure engineering (Valamanesh et al., 2015).

A basic starting point for those studies using multivariate modeling
methods is that the extremal events they investigated are often char-
acterized by several features or processes. For instance, in hydrology a
storm could be characterized by its density and duration, and a flood
event could be characterized by its peak, volume, and duration.
Similarly, a pre-crash event leading to a crash or a traffic conflict can
also be characterized from different aspects by different surrogate
safety measures, such as temporal proximity, spatial proximity, like-
lihood of evasive actions, and consequence of a potential collision
(Davis et al., 2011; Laureshyn et al., 2017; Tageldin and Sayed, 2016).
Modeling these aspects jointly will certainly bring complications as
defining extremal events in a multidimensional space and deducing
safety implications from the joint behavior of surrogate safety mea-
sures. This study attempts to investigate these issues using the multi-
variate extreme value modeling techniques.

The remainder of the study is organized as follows. Section 3 de-
scribes the bivariate threshold excess models and the model estimation
methods. The data including the development of surrogate safety
measures is presented in Section 4. The modeling results based on the
practical data is discussed in Section 5. The conclusions are presented in
Section 6.

3. Bivariate extreme value modelling methods

Bivariate extreme value theory models the joint distribution of two
extreme variables and it is an extension of the univariate extreme value
theory. The reader can refer to Coles (2001) and Beirlant et al., (2004)

for detailed theoretical foundations on bivariate extreme value models
as well as univariate extreme value models. This study mainly describes
the models for exceedances over high thresholds, i.e., bivariate
threshold excess models.

3.1. Bivariate threshold excess models

Suppose {(x1, y1), (x2, y2), …} are independent realizations of a
random vector (X, Y) with joint distribution function F(x, y). The bi-
variate threshold excess model approximates the joint distribution F(x,
y) on regions of the form x> ux, y> uy, for large enough ux and uy. For
suitable thresholds ux and uy, each of the two marginal distributions of F
can be approximated in the form of a univariate generalized Pareto
(GP) distribution, with respective parameter sets (σx, ξx) and (σy, ξy).
The functional form of GP approximation is as follows:
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Defining ςx = Pr{x> ux} and ςy = Pr{y> uy}, the following transfor-
mations:

⎜ ⎟= −⎛
⎝

⎧
⎨⎩

− ⎡
⎣

+ ⎤
⎦

⎫
⎬⎭

⎞
⎠

− − −

x ςlog 1 1͠ x
ξ x u

σ

ξ( ) 1/ 1
x x

x

x
and = −y͠

⎜ ⎟
⎛

⎝
⎧
⎨⎩

− ⎡
⎣

+ ⎤
⎦

⎫
⎬⎭

⎞

⎠

− − −

ςlog 1 1y
ξ y u

σ

ξ( ) 1/ 1
y y

y

y
induce a pair of variables x y( , )͠ ͠

whose marginal distributions are approximately standard Fréchet dis-
tributions for x> ux and y> uy. As detailed in Coles (2001), the joint
distribution F(x, y) can be expressed as
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and H (also called spectral measure) is a distribution function on [0, 1]
satisfying the constraint:
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Although Equations (2) to (4) provide a complete characterization
of bivariate limit distributions, the class of possible limits constrained
only by Equation (3) is wide. Particularly, any distribution function H
on [0, 1] in Equation (3), satisfying the mean constraint of Equation (4),
gives rise to a valid limit in Equation (2). This leads to difficulties in the
use of bivariate limit distributions, as they have virtually infinite
parametric forms. One approach to address this problem is to
use specific parametric distributions for H, leading to sub-families
of distributions for G. For instance, letting H have the density
function of = − − + −− − − − − −h w α w w w w( ) ( 1){ (1 )} { (1 ) }α α α α1

2
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on 0<w<1. The mean constraint of Equation (4) is satisfied for this H
because of symmetry at w=0.5. Substitution into (3) and (2) and then
generates the logistic family of bivariate extreme value distributions, as
shown in Table 1. There are also other parametric families available in
the literature, including asymmetry logistic, negative logistic, asym-
metry negative logistic, bilogistic, negative bilogistic, and Husler-Reiss,
as listed in Table 1.

3.2. Threshold selection

To ensure that the approximation in Equation (2) is valid, a pair of
optimal thresholds need to be selected. The approximation entails that
the marginal distributions of excess over corresponding thresholds are
modeled by a GP distribution while the dependence structure between
two margins by that of a bivariate extreme value distribution. Marginal

L. Zheng et al. Accident Analysis and Prevention 120 (2018) 83–91

84



Download English Version:

https://daneshyari.com/en/article/6965022

Download Persian Version:

https://daneshyari.com/article/6965022

Daneshyari.com

https://daneshyari.com/en/article/6965022
https://daneshyari.com/article/6965022
https://daneshyari.com

