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A B S T R A C T

The investigation of relationships between traffic crashes and relevant factors is important in traffic safety
management. Various methods have been developed for modeling crash data. In real world scenarios, crash data
often display the characteristics of over-dispersion. However, on occasions, some crash datasets have exhibited
under-dispersion, especially in cases where the data are conditioned upon the mean. The commonly used models
(such as the Poisson and the NB regression models) have associated limitations to cope with various degrees of
dispersion. In light of this, a generalized event count (GEC) model, which can be generally used to handle over-,
equi-, and under-dispersed data, is proposed in this study.

This model was first applied to case studies using data from Toronto, characterized by over-dispersion, and
then to crash data from railway-highway crossings in Korea, characterized with under-dispersion. The results
from the GEC model were compared with those from the Negative binomial and the hyper-Poisson models. The
cases studies show that the proposed model provides good performance for crash data characterized with over-
and under-dispersion. Moreover, the proposed model simplifies the modeling process and the prediction of crash
data.

1. Introduction

More than one million people are killed in traffic crashes every year
around the world (WHO, 2013). Traffic crashes result in enormous
losses to society and the economy. Several researchers have been
seeking methods for better understanding contributing factors that in-
fluence or are associated with crashes and develop effective strategies
to improve road safety.

The relationships between traffic crashes and relative factors have
been investigated for more than three decades (Lord and Mannering,
2010). Various kinds of methodologies have been proposed over the
years to improve on predicting the likelihood of crashes and determine
the variables or factors that significantly influence the number of cra-
shes and their severities.

It has been shown that crash data usually exhibit over-dispersion.
Initially, the negative binomial (NB) regression model was proposed to
handle such datasets (Miaou, 1994; Poch and Mannering, 1996). The
NB model is derived by rewriting the Poisson parameter as

= +λ EXP(βX ε )i i i in which EXP(εi) is a gamma-distributed error term
with mean 1 and variance α. Given important limitations associated
with the NB model, highway safety researchers have proposed new and
innovative models, such as the random-effects (Hausman et al., 1984;

Shankar et al., 1998) and its extension to random parameters models
(Anastasopoulos and Mannering, 2009), bi-variate/multivariate models
(Maher, 1990; Ma et al., 2006; Park and Lord, 2007; Barua et al., 2016),
multiparameter models (Geedipally et al., 2012; Vangala et al., 2014),
generalized additive models (Xie and Zhang, 2008), and semi-para-
metric models based on the Dirichlet process (Heydari et al., 2016b;
Shirazi et al., 2016). These models can handle characteristics commonly
found in crash data, such as excess zero responses and datasets with
long tails among others. Readers are referred to Lord and Mannering
(2010), Mannering and Bhat (2014), and Heydari et al. (2016a), who
have provided a comprehensive review of existing methods with their
advantages and disadvantages.

In addition to over-dispersion, some researchers have also en-
countered under-dispersion (Oh et al., 2006; Daniels et al., 2010; Lord
et al., 2010). Although the models described above are able to capture
or handle over-dispersion or unobserved heterogeneity, they cannot be
used efficiently when the data are characterized by under-dispersion,
either in the dataset itself or when the observations are conditioned
upon the mean (Lord et al., 2010). To handle under-dispersion, Oh et al.
(2006) first proposed the gamma model to analyze crash data ex-
hibiting this unique characteristic. Although the gamma model can
handle under-dispersion, the model suffers from an important
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drawback since past observations are assumed to directly influence
future observations (e.g., a crash that occurred in one year is directly
correlated to a crash that will occur the following or a future year)
(Lord et al., 2010). Subsequently, Lord et al., 2008, 2010, Lord and
Mannering, 2010) have proposed the Conway-Maxwell-Poisson (COM-
Poisson) generalized linear model for analyzing crash data. Recently,
Huang (2017) proposed a re-parametrization of the COM-Poisson
model, where the mean of the counts is modeled directly rather than
using the mode as an approximation of the mean value. The COM-
Poisson model can handle both under- and over-dispersion, similar to
the gamma model, but without the key limitation of the latter, although
it may provide erroneous estimates for very small sample size and low
sample mean values (Lord et al., 2010). Along the same line, Zou et al.
(2013) examined the applicability of double Poisson (DP) generalized
linear model for analyzing crash data and compared its performance
with the COM-Poisson model. Khazraee et al. (2015) applied the hyper-
Poisson (hP) generalized linear model to analyze under-dispersed crash
data. It should be pointed out that the COM-Poisson and hP models both
allow the dispersion of the distribution to be observation-specific and
dependent on model covariates and both the DP and hP models offered
similar statistical performance than those associated with the COM-
Poisson. The differences were seen with the complexity for estimating
the coefficients of the models.

The research documented in this paper therefore continues the work
performed on the development of tools that would allow the analysis of
both over- and under- dispersion. More specifically, the main goal is to
apply the generalized event count (GEC) model developed by King
(1989) for crash analysis and prediction. Similar to the COM-Poisson,
DP and hP models introduced above, this model also handles over-,
under- and equi-dispersion and has been shown to provide good sta-
tistical performances in other fields, such as the evaluation of con-
gressional challenges of presidential votes and superpower conflicts
(King, 1989). So far, this model has not been applied for analyzing
crash data. Overall, the GEC model is easy to implement since the
coefficients can be estimated using maximum likelihood estimation
(MLE) and can handle over-, under- and equi-dispersion with good
performance. The next section presents the GEC model for crash data
analysis. Subsequently, case studies are presented; they were used to
evaluate the performance of the proposed method by comparing the
model with existing models, such as NB regression model or HP model.
Finally, the findings and conclusions are summarized.

2. Methodology

This section first briefly introduces the Poisson model as back-
ground. It is followed by a more detailed description of the GEC model.

2.1. The Poisson regression model

The Poisson regression model is the basic model for analyzing count
data. It aims at modeling a count (or crash) variable Y, which is as-
sumed to follow a Poisson distribution with a parameter (or mean) λ
(Lord and Mannering, 2010; Myers et al., 2012). The Poisson dis-
tribution usually implies that the probability of an event occurring at
any instant is constant and independent of all previous events during
the observation period (King, 1988). In highway safety, the probability
that the number of crashes takes the value yi on the ith entity can be
expressed as Eq. (1).
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In the Poisson regression model, the mean can be written as
=λ EXP(βX )i i , where Xi is a vector of k explanatory variables and β is a

1× k parameter vector that indicates the effect of the explanatory
variables on the dependent variable. To estimate β, the method of

maximum likelihood can be used. The likelihood function is presented
in Eq. (2).
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For a Poisson regression model, the variance of Yi is equal to its
expected value: V (Yi) = E (Yi) = λi. In practice, this model is not used
frequently in safety research since the main assumption between the
mean and variance is violated. This model is presented here since its
characteristics are expanded in the next section.

2.2. The generalized event count model

In most cases, road crash data display the characteristic of over-
dispersion and, on rare occasions, could exhibit under-dispersion.
Considering all possible situations, the relationship between mean and
variance is defined by V (Yi) = λ σi 2 for >λ 0i and >σ 02 . σ2 is called
the dispersion parameter. If the crash variable follows a Poisson dis-
tribution, then =σ 12 and V (Yi) =E (Yi) = λi ； if >σ 12 , the data are
over-dispersed; and if < <0 σ 12 , the data are regarded as under-dis-
persed. With the introduction of the parameter σ2, the GEC model is
developed and is able to model event counts with unknown degrees of
dispersion. To construct this model, a GEC probability distribution with
parameters λi and σ2 is established. In this model, σ2 can take on any
value greater than zero. Special cases occur when the dispersion para-
meter falls into different ranges. When < <0 σ 12 , the GEC distribution
can handle under-dispersed data. When =σ 12 , the model has the same
probability function as the Poisson regression model; and when >σ 12 ,
it’s probability function is similar to the NB regression model. This
GEC’s probability distribution offers smooth transitions between these
scenarios. To derive the GEC’s probability distribution, a concept taken
from theoretical statistics called “bilinear recurrence relationship” was
introduced (Katz, 1965). The relationship is shown in Eq. (3).
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where θi and γi are ancillary parameters. In this case, Eq. (3) should be
re-parameterized in order to make the relationship suitable for the
previous definitions.

Statistical analysis reveals that the expected value E (Yi) and var-
iance V (Yi) of a random variable Yi that adheres to the relationship in
Eq. (3) are as follows (Lee, 1986):
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Solving the above two equations, we then get:
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Then Eq. (3) becomes:
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In Eq. (7), fgec represents the GEC distribution. The expected value
and variance of the distribution is consistent with the previous defini-
tions: E (Yi) = λi and V (Yi) = σλi

2.
At this point, Eq. (7) is still in the form of a recurrence relationship,

so it should be transformed into more traditional probability distribu-
tions. To achieve this, the term −f y σ( 1λ , )gec i i

2 must be recursively
substituted by λi and σ2. To better explain this process, Eq. (8) shows a
simple example where given =y 2i (King, 1989)

= =Y λ σ f λ σPr( 2 , ) (2 , )i i gec i
2 2

(8)
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