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A B S T R A C T

Accident events are generally unexpected and occur rarely. Pre-accident risk assessment by surrogate indicators
is an effective way to identify risk levels and thus boost accident prediction. Herein, the concept of Key Risk
Indicator (KRI) is proposed, which assesses risk exposures using hybrid indicators. Seven metrics are shortlisted
as the basic indicators in KRI, with evaluation in terms of risk behaviour, risk avoidance, and risk margin. A
typical real-world chain-collision accident and its antecedent (pre-crash) road traffic movements are retrieved
from surveillance video footage, and a grid remapping method is proposed for data extraction and coordinates
transformation. To investigate the feasibility of each indicator in risk assessment, a temporal-spatial case-control
is designed. By comparison, Time Integrated Time-to-collision (TIT) performs better in identifying pre-accident
risk conditions; while Crash Potential Index (CPI) is helpful in further picking out the severest ones (the near-
accident). Based on TIT and CPI, the expressions of KRIs are developed, which enable us to evaluate risk severity
with three levels, as well as the likelihood. KRI-based risk assessment also reveals predictive insights about a
potential accident, including at-risk vehicles, locations and time. Furthermore, straightforward thresholds are
defined flexibly in KRIs, since the impact of different threshold values is found not to be very critical. For better
validation, another independent real-world accident sample is examined, and the two results are in close
agreement. Hierarchical indicators such as KRIs offer new insights about pre-accident risk exposures, which is
helpful for accident assessment and prediction.

1. Introduction

Traffic accidents cause great loss of lives and property damage.
Reliable accident prediction and proactive prevention are undoubtedly
of great benefit and necessity.

Numerous studies have been conducted on traffic accident assess-
ment and prevention. Accident occurrence is a complex mechanism,
with many contributing factors (Mannering et al., 2016). Unsafe traffic
conditions and risky driving behaviours have been explored to char-
acterise accidents, including human errors, traffic speed and occu-
pancy, weather and visibility (e.g. Saifuzzaman and Zheng, 2014;
Young, 2017). Statistical models and machine learning approaches are
being widely applied to analyse the relationship between accidents and
influencing factors, such as random forests (Abdel-Aty and Haleem,
2011), support vector machine (Dong et al., 2015), among others. These
studies are helpful to describe general linkages between accident
numbers and coexisting factors or concurrent scenarios. Nevertheless,
even under equivalent situations, actual accident occurrence remains

unreliable to be assessed or predicted if merely relying on these trends
and factors. Due to uncertainty and randomness, effective accident as-
sessment and prediction has been found to be extremely difficult.

Risk assessment is essential when making any accident prediction.
Pre-accident risk exposure is more meaningful for accident prediction
and prevention. Although the occurrence of an accident is generally
unexpected, for certain types of accidents, there is an accident-forming
process, especially for accidents associated with traffic conflicts. Traffic
conflict represents a transitional state between safety and a potential
accident. A conflict is an observed situation in which two or more road
users approach each other in space and time to such an extent that there
is a risk of collision if their movements remain unchanged (Amundsen
and Hydén, 1977). Conflicts can improve the understanding of the ac-
cident mechanism and chain of events which may lead to a collision
(Mahmud et al., 2017). Compared with actual accidents, incidences of
traffic conflicts, with attendant collision risks of various degrees, are
more frequent (Chin and Quek, 1997). Moreover, a strong relationship
has been found between traffic conflicts and actual crashes in many
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studies (e.g. El-Basyouny and Sayed, 2013, Wu et al., 2014). Herein, the
scope of risk assessment should therefore focus on pre-accident traffic
conflicts, as an alternative to actual accident numbers.

Surrogate measures are widely utilised in traffic conflict techniques
(TCT) for safety evaluation (e.g. Zheng et al., 2014). Mahmud et al.
(2017) provides a comprehensive review on the developments and
applications of 17 proximal surrogate indicators. The reliability and
validity of surrogate indicators are well accepted for safety evaluation
(Chai and Wong, 2015). In practice, FHWA developed a Surrogate
Safety Assessment Model (SSAM) as a post processor to determine the
number and severity of conflicts obtained from simulation packages
(Sobhani et al., 2013). Many advanced driving assistance systems
(ADAS) have used surrogate indicators as important warning criteria
(Wang et al., 2013). Nevertheless, the effectiveness of surrogate in-
dicators under real-world accidents has not been properly investigated.
In particular, it remains unclear the extent to which the surrogate in-
dicators are useful for pre-accident risk assessment. Besides, indicators
are often designed under simplified assumptions, such as unchanged
trajectory, constant speed and predefined deceleration rate. To re-
present complex accident mechanism, combined use of various in-
dicators has been suggested (e.g. Laureshyn et al., 2010). However, no
consensus has been reached yet on which indicators should be selected
and how to combine them.

High-quality data is necessary for risk measurement. Existing stu-
dies widely use accident data from police recording and self-reports,
controlled experiments and simulation, loop detectors, etc. From such
sources, it is extremely difficult to obtain pre-accident data of high-
quality (e.g. accurate, 1-s resolution or less, vehicle level) (Imprialou
and Quddus, 2017). Besides, real-world accidents are generally un-
expected and occur rarely, and purposive tracking is very costly
(Hakkert and Gitelman, 2014). Note that it is near impossible to pin-
point the precise time and location of an accident before-hand. Herein,
a practical way to obtain pre-accident information is by retrieving the
video footage that contains an accident event. Such video footage can
be gathered by a surveillance camera system that continuously records
traffic movements for the entire road network.

However, data extraction from video recording is also challenging.
Existing methods in computer vision are useful for vehicle detection
and tracking (e.g. vehicle/non-vehicle classification, vehicle counting)
(e.g. Sivaraman and Trivedi, 2013), but they are problematic for ac-
curate data extraction and measurement (e.g. vehicle trajectory, gap,
speed). Additionally, there are many constraints in camera-based data
acquisition, such as lens distortion from camera angles, object over-
lapping in dense conditions. The solution for exact measurement is
lacking. Chai and Wong (2013) developed and applied a technique of
measuring a vehicle trajectory by a projective transformation of video
frames at first, and then indicating vehicle positions by means of
computer-aided annotation; this hybrid approach is flexible and easy to
use, albeit involving certain tedium.

Being different from previous studies in the literature, this paper
focuses on developing hybrid indicators, namely the key risk indicators
(KRIs), to hierarchically assess pre-accident risk exposures. Section 2
develops the concept of KRI, and elaborates the selection of basic in-
dicators. Section 3 describes the data extraction of pre-accident vehicle
trajectory, and proposes a grid remapping method for coordinates
transformation. Section 4 constructs the KRIs based on the findings
from a spatial-temporal case-control and conducts the validation by
another accident event. The final two sections cover the discussion and
conclusion.

2. Concept of key risk indicator

2.1. Introduction of KRI

The concept of KRI has important applications in several areas, such
as operational risk management (Scandizzo, 2005) and enterprise risk

management (ERM) (Hwang et al., 2010) and financing, among others.
As applied to road safety, KRIs are metrics capable of revealing risk

exposures in traffic flow, and providing predictive signals of a potential
accident. KRIs enable us to identify risks that may lead to an accident,
and grasp insights of an impending accident (such as at-risk vehicles,
potential locations and time), thus the prevention strategy can be ap-
plied in a targeted and pre-emptive way. Hence, for accident assessment
and prediction purposes, it is crucial that KRIs are designed effectively
and reliably.

KRIs are developed based on a set of basic indicators that are ef-
fective and reliable in measuring risks. The design of KRIs starts with
first shortlisting a set of existing metrics and then identifying the most
critical ones that can serve as the basic indicators. The guiding princi-
ples for selecting metrics are outlined, such as meaningfulness, mea-
surability, predictability (e.g. leading indicators), etc. Shortlisted me-
trics should offer useful insights about accident risks and be easy and
clear to interpret. Complex metrics would make it difficult to track and
manage. In addition, leading indicators should be included to offer
predictive signals of a potential accident.

2.2. Risk behaviour indicators

Driving behaviour plays a major role in accident risk. High-risk
driving behaviours may result in high likelihood of an accident, such as
excessive speeding, driving too close to the preceding vehicle, etc. As a
result, temporal and spatial proximity can be used to evaluate such risk
behaviours. In addition, indicators based on temporal proximity are
relatively popular and objective, because they integrate both the spatial
proximity and speed difference (Zheng et al., 2014). Among time-based
indicators, Time to Collision (TTC) is well-recognised and widely-used
in practice, for theoretical and reliability reasons (Mahmud et al.,
2017). Based on TTC, Time Exposed TTC (TET) and Time Integrated
TTC (TIT) were further proposed (Minderhoud and Bovy, 2001), to
measure risk duration and risk integration, respectively. The three time-
based indicators are shortlisted.

(1) The basic TTC is defined by the time to a potential collision be-
tween two vehicles (van der Horst, 1990), as follows:
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where x t( )i and v t( )i are the position and velocity of targeted (fol-
lowing) vehicle (i) at timestamp t , and −Li 1 is the length of preceding
(leading) vehicle ( −i 1).

Generally, risk behaviours are flagged for any vehicle pair with a
TTC value less than a given threshold. However, risk severity associated
with TTC is not obvious. TTC notion is illustrated with vehicle trajec-
tories in Fig. 1(a).

(2) TET expresses the total time of a vehicle exposed in risk situations,
as follows:
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where, for a period = ∙T N τsc, there are N small time intervals, each
interval is τsc (e.g. 0.1 s). δ t( )i is a switching variable between 1 and 0,
and value 1 indicates a signal of risk condition, when the TTC value is
below threshold TTC*.

(3) TIT takes into account the accumulated impact of risk behaviour,
using integration of TTC profile below specified threshold, as fol-
lows:
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