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a b s t r a c t

In this paper, we propose a new design method for Gain-Scheduled Output Feedback (GSOF) controllers
for continuous-time Linear Parameter-Varying (LPV) systems via Parameter-Dependent Lyapunov
Functions (PDLFs). The GSOF controllers depend solely on scheduling parameters. Although our method
requires a line search to obtain suboptimal controllers, it produces practical GSOF controllers, being
independent of the derivatives of scheduling parameters. Our method is proved to be no more
conservative than conventional design methods via constant Lyapunov functions as well as particularly
structured PDLFs.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

It is widely known that Gain-Scheduled (GS) controllers have
better performance than robust controllers if scheduling parame-
ters,which describe changes of plant dynamics, are available.Many
researchers have therefore already tackled the design problem
of GS Output-Feedback (GSOF) controllers for Linear Parameter-
Varying (LPV) systems using Linear Matrix Inequalities (LMIs),
e.g. Apkarian and Adams (1998), Apkarian and Gahinet (1995),
Apkarian, Gahinet, and Becker (1995), Scherer (1996) and Wu,
Yang, Packard, and Becker (1996). In Apkarian and Adams (1998),
Scherer (1996) and Wu et al. (1996), Parameter-Dependent Lya-
punov Functions (PDLFs) are adopted to reduce the conservatism
due to Parameter-inDependent Lyapunov Functions (PiDLFs) used
in Apkarian et al. (1995) and Apkarian and Gahinet (1995).
Although thesemethods successfully reduce conservatism, the de-
signed GSOF controllers require not only scheduling parameters
but also their derivatives, which cannot be obtained in the real
world.
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To circumvent this difficulty, several remedies have been
proposed such as controller design via structured PDLFs (Apkarian
& Adams, 1998) and controller implementations incorporating
filter systems (Masubuchi & Kurata, 2009). However, these
methods have drawbacks: the former still has conservatism due to
the structured parameter-dependency of PDLFs, and the filters in
the latter increase the numerical complexity of the implemented
GSOF controllers. From a practical perspective, simple GSOF
controllers are preferable.

This paper tackles the design problem of GSOF controllers
for continuous-time LPV systems via PDLFs, with the controllers
incorporating no additional systems (such as filters) and being
dependent only on the scheduling parameters. We successfully
propose a new design method for the problem in terms of a set
of Parameter-Dependent LMIs (PDLMIs) with single line search
parameters. Ourmethod is proved to be nomore conservative than
conventional design methods via PiDLFs or particularly structured
PDLFs. Recently, Köroğlu has independently proposed a design
method for GSOF controllers for regulation problems using a
similar technique to ours (Köroğlu, 2010).

We use standard notation. He{X} is a shorthand for X +XT , In, I
and 0 respectively denote an n × n dimensional identity matrix,
an identity matrix and a zero matrix of appropriate dimensions,
Rn×m and Sn respectively denote sets of n × m dimensional real
matrices andn×ndimensional symmetric realmatrices,⊗denotes
the Kronecker product, diag(X1, . . . , Xl) denotes a block-diagonal
matrix composed of X1, . . . and Xl, and ∗ in symmetric matrices
denotes an abbreviated off-diagonal block.

0005-1098/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2011.09.023

http://dx.doi.org/10.1016/j.automatica.2011.09.023
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:sato.masayuki@jaxa.jp
http://dx.doi.org/10.1016/j.automatica.2011.09.023


M. Sato / Automatica 47 (2011) 2786–2790 2787

2. Preliminaries

2.1. System definitions

Suppose that the state-space representation of an LPV system
with k independent scheduling parameters is given as follows:

G(θ) :

ẋ = A(θ)x + B1(θ)w + B2(θ)u
z = C1(θ)x + D11(θ)w + D12(θ)u
y = C2(θ)x + D21(θ)w

, (1)

where x ∈ Rn, w ∈ Rnw , u ∈ Rnu , z ∈ Rnz and y ∈

Rny respectively denote the state with x = 0 at t = 0, the
disturbance input, the control input, the controlled output and the
measurement output. The state-spacematrices in (1) are supposed
to be polynomially parameter-dependent and to have compatible
dimensions. The scheduling parameters θi and their derivatives
with respect to time θ̇i are supposed to lie in a priori given hyper-
rectangles Ωθ and Λθ , respectively; that is, θ(t) ∈ Ωθ and θ̇ (t) ∈

Λθ hold for θ = [θ1 · · · θk]T and θ̇ =

θ̇1 · · · θ̇k

T
. Λθ is supposed

to include the origin.
We design a full-order GSOF controller C(θ) for G(θ),

C(θ) :


ẋc = Ac(θ)xc + Bc(θ)y
u = Cc(θ)xc + Dc(θ)y, (2)

where xc ∈ Rn denotes the state with xc = 0 at t = 0. The state-
space matrices in (2) are supposed to have compatible dimensions
and to be rationally parameter-dependent. In contrast to existing
designmethods via PDLFs, e.g. Apkarian andAdams (1998), Scherer
(1996) and Wu et al. (1996), the GSOF controller is supposed to
depend only on the scheduling parameters θi.

Then, the closed-loop system is given as follows:

Gcl(θ) :


ẋcl = Acl(θ)xcl + Bcl(θ)w
z = Ccl(θ)xcl + Dcl(θ)w,

(3)

where xcl =

xT xTc

T and

Acl(θ) =

[
A(θ) + B2(θ)Dc(θ)C2(θ) B2(θ)Cc(θ)

Bc(θ)C2(θ) Ac(θ)

]
,

Bcl(θ) =

[
B1(θ) + B2(θ)Dc(θ)D21(θ)

Bc(θ)D21(θ)

]
,

Ccl(θ) =

C1(θ) + D12(θ)Dc(θ)C2(θ) D12(θ)Cc(θ)


,

Dcl(θ) = D11(θ) + D12(θ)Dc(θ)D21(θ).

2.2. Problem definitions

We tackle the following two problems.

Problem 1 (H∞-Type Problem). For a given positive number γ∞,
design aGSOF controller (2) depending solely on θi which stabilizes
the closed-loop system (3) and satisfies (4) for all admissible pairs
(θ, θ̇) ∈ Ωθ × Λθ .

sup
w∈L2,w≠0

‖z‖2/‖w‖2 < γ∞. (4)

Problem 2 (H2-Type Problem). Suppose that D11(θ) = 0 holds for
all θ ∈ Ωθ . For a given positive numberγ2, design aGSOF controller
(2) depending solely on θi with Dc(θ) = 0 which stabilizes the
closed-loop system (3) and satisfies (5) for all admissible pairs
(θ, θ̇) ∈ Ωθ × Λθ .

E

∫
∞

0
zT zdt


< γ 2

2 for w =


w0(t = 0)
0(t ≠ 0) (5)

with a random variable w0 satisfying E

w0w

T
0


= I.

2.3. Basic lemmas

Hereafter, Ẋ(θ) denotes d
dt X(θ) :=

∑k
i=1

dθi
dt

∂X(θ)

∂θi
.

For given controller C(θ), the following are well known.

Lemma 3 (Wu et al., 1996). For a positive number γ∞, if there exists
a continuously differentiable parameter-dependent matrix Xcl(θ) ∈

S2n such that (6) and (7) hold, then the controller C(θ) stabilizes
the closed-loop system (3) and satisfies (4) for all admissible pairs
(θ, θ̇) ∈ Ωθ × Λθ .

Xcl(θ) > 0, ∀θ ∈ Ωθ (6)He {Acl(θ)Xcl(θ)} − Ẋcl(θ) ∗ Bcl(θ)
Ccl(θ)Xcl(θ) −γ∞Inz Dcl(θ)

∗ ∗ −γ∞Inw

 < 0,

∀

θ, θ̇


∈ Ωθ × Λθ . (7)

Lemma 4 (Sznaier, 1999). Suppose that Dcl(θ) = 0 holds for all
θ ∈ Ωθ . For a positive number γ2, if there exists a continuously
differentiable parameter-dependent matrix Xcl(θ) ∈ S2n such that
(6), (8) and (9) hold, then the controller C(θ) stabilizes the closed-loop
system (3) and satisfies (5) for all admissible pairs (θ, θ̇) ∈ Ωθ ×Λθ .[
He {Acl(θ)Xcl(θ)} − Ẋcl(θ) ∗

Ccl(θ)Xcl(θ) −Inz

]
< 0,

∀

θ, θ̇


∈ Ωθ × Λθ (8)

γ 2
2 − Tr


Bcl(θ)TXcl(θ)−1Bcl(θ)


> 0, ∀θ ∈ Ωθ . (9)

3. Main results

In Lemmas 3 and 4, PDLFs are set as xTclXcl(θ)−1xcl with a
continuously differentiable parameter-dependent matrix Xcl(θ).
According to (Apkarian & Adams, 1998; Chilali & Gahinet, 1996),
matrix Xcl(θ) is now set as Π1(θ)Π2(θ)−1 with Π1(θ) =

R(θ) In
M(θ)T 0


, Π2(θ) =


In S(θ)

0 N(θ)T


,where S(θ), R(θ) ∈ Sn are

continuously differentiable parameter-dependent matrices to be
determined andmatrices N(θ) andM(θ) are arbitrary nonsingular
matrices satisfying the factorization problem In − S(θ)R(θ) =

N(θ)M(θ)T .
Note that the solvability of the method in Apkarian and Adams

(1998) does not depend on the factorization problem. Bearing this
in mind, let us suppose that N(θ) and M(θ) are set as −S(θ) and
R(θ) − S(θ)−1 respectively. Obviously, these matrices satisfy the
above factorization problem and do not change the solvability of
the method in Apkarian and Adams (1998). Then, matrix Xcl(θ) is
derived as

Xcl(θ) =

[
X(θ) Y (θ)
Y (θ) Y (θ)

]
, (10)

where X(θ) = R(θ) and Y (θ) = R(θ) − S(θ)−1. Therefore, PDLFs
can be set as (10) without loss of generality as long as Xcl(θ) is set
as Π1(θ)Π2(θ)−1. (Details of the above can be also found in Sato,
2008.)

3.1. Proposed methods

We propose the following theorem for Problem 1.

Theorem 5. For a given positive number γ∞, suppose that there exist
a positive number ε, continuously differentiable parameter-dependent
matrices X(θ), Z(θ) ∈ Sn, and parameter-dependent matrices
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