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A B S T R A C T

This study analyzes rear-end collision risk of cars and heavy vehicles on freeways using a surrogate safety
measure. The crash potential index (CPI) was modified to reflect driver’s reaction time and estimated by types of
lead and following vehicles (car or heavy vehicle). CPIs were estimated using the individual vehicle trajectory
data from a segment of the US-101 freeway in Los Angeles, U.S.A. It was found that the CPI was generally higher
for the following heavy vehicle than the following car due to heavy vehicle’s lower braking capability. This study
also validates the CPI using the simulated traffic data which replicate the observed traffic conditions a few
minutes before the crash time upstream and downstream of the crash locations. The observed data were obtained
from crash records and loop detectors on a section of the Gardiner Expressway in Toronto, Canada. The result
shows that the values of CPI were consistently higher during the traffic conditions immediately before the crash
time (crash case) than the normal traffic conditions (non-crash case). This demonstrates that the CPI can be used
to capture rear-end collision risk during car-following maneuver on freeways. The result also shows that rear-end
collision risk is lower for heavy vehicles than cars in the crash case due to their shorter reaction time and lower
speed when spacing is shorter. Thus, it is important to reflect the differences in driver behavior and vehicle
performance characteristics between cars and heavy vehicles in estimating surrogate safety measures. Lastly, it
was found that the CPI-based crash prediction model can correctly identify the crash and non-crash cases at
higher accuracy than the other crash prediction models based on detectors.

1. Introduction

As economy is globalized in recent few decades, demand for freight
transportation has dramatically increased. As more heavy vehicles
shared the same road with passenger cars, interactions between cars
and heavy vehicles also increased. This results in higher number of
heavy vehicle-involved crashes which are more likely to cause fatality
or severe injury. In Canada, 524 people died and 11,574 were injured in
heavy vehicle-involved crashes in 2001 (Mayhew et al., 2004). This
accounts for 20% of fatalities and 5% of reported injuries due to crashes
on roadways. In the U.S., 4186 large trucks and buses were involved in
fatal crashes in 2013, and large truck and bus fatalities per 100 million
vehicle miles traveled by all motor vehicles remained steady at 0.142
from 2012 to 2013 (Federal Motor Carrier Safety Administration,
2014).

To identify the factors contributing to heavy-vehicle-involved cra-
shes, historical crash data have been collected and crash frequency has
been predicted using statistical models. However, the development of
crash prediction models requires a long period of crash data collection

due to infrequent occurrence of crashes (Gettman et al., 2008). More-
over, this method is not effective in preventing crash occurrence since
the locations of high risk of collision can only be identified after high
crash frequencies are observed (Gettman et al., 2008).

In contrast, the conflict-based studies using surrogate safety mea-
sures predict the collision risk based on the individual vehicle move-
ment data which can be collected in a shorter time period. Unlike the
crash-based studies, this method can also proactively mitigate the col-
lision risk before more serious safety problems occur. Surrogate safety
measures are typically estimated using the lead and following vehicles’
speeds and acceleration, and their spacing.

However, in the estimation of surrogate safety measures, the types
of lead and following vehicles such as vehicle size and acceleration/
deceleration capability have not been explicitly investigated. For in-
stance, heavier vehicles have lower deceleration capability than lighter
vehicles. Thus, if the lead vehicle stops, it takes longer time for the
following heavy vehicles to decelerate to avoid a collision than light
vehicles. Consequently, the collision risk will be higher for heavy ve-
hicles. For this reason, heavy vehicle drivers tend to maintain longer
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spacing with the lead vehicle than car drivers. On the other hand, due
to the difference in the height of the driver position between cars and
heavy vehicles, heavy vehicle drivers generally have a better view of
the road and can adjust speeds faster than car drivers.

Also, the type of lead vehicle affects the following vehicle driver’s
sight. Larger lead vehicles are more likely to obstruct the following
smaller vehicle driver’s sight. In this situation, the following vehicle
drivers tend to reduce speed to maintain longer spacing with the lead
vehicle and increase their sight distance. Clearly, the types of lead and
following vehicles affect the behavior of the following vehicle’s driver
and the collision risk. Thus, these effects must be captured in the esti-
mation of surrogate safety measures.

Conventionally, surrogate safety measures have been estimated
using the microscopic traffic simulation model and these simulated
surrogate safety measures have been validated by comparing them with
the observed crash frequency (Shahdah et al., 2015; Essa and Sayed,
2015; Ariza, 2011). However, the correlation between the simulated
surrogate safety measures and crash frequency is an insufficient evi-
dence of validity since most of the correlation comes from exposure
(traffic volumes). Thus, the correlation does not guarantee that the
variability of frequency of crashes observed in the real world under the
same exposure is properly reflected in the simulated surrogate safety
measures. Moreover, the crash frequency data do not include the events
with high collision risk which did not lead to a crash (Cunto et al.,
2009). Thus, Cunto et al. (2009) proposed to validate surrogate safety
measures by comparing them between the traffic conditions a few
minutes before the time of actual crashes (crash case) and the normal
traffic conditions (non-crash case). They found that the surrogate safety
measure was higher for the crash case than the non-crash case. How-
ever, they did not validate the surrogate safety measure for the different
types of lead and following vehicles.

This study develops a more elaborate surrogate safety measure for
rear-end collision risk called the crash potential index (CPI) which was
originally proposed by Cunto and Saccomanno (2008). The objectives
of this paper are to 1) develop a modified CPI which accounts for the
difference in driver behavior and vehicle performance between cars and
heavy vehicles, 2) compare the CPIs among different types of lead and
following vehicles, and 3) validate the CPIs using the observed traffic
data at the time of crashes and during normal traffic conditions.

2. Literature review

To estimate crash risk, real-time crash prediction models have been
developed using loop detector data and historical crash records in the
past studies. These studies hypothesized that short-term traffic flow
changes (e.g., speed variation) immediately before crash occurrence
contribute to crash risk. For instance, Abdel-Aty et al. (2004) predicted
the crash likelihood using real-time traffic data extracted from loop
detectors 5–10min before the crash. Furthermore, the authors in-
vestigated real-time likelihood of rear-end crashes (Pande and Abdel-
Aty, 2006a) and lane-change crashes (Pande and Abdel-Aty, 2006b).
Similarly, Hossain and Muromachi (2011, 2013) predicted crash risk for
different locations (basic freeway segments and vicinity of ramp) and
different types of crash (rear-end and sideswipe). Xu et al. (2013a,b)
also predicted crash risk for different crash severity levels (fatal, injury,
and property damage only) and weather conditions (clear, rainy, and
reduced visibility).

Although these models show good performance in crash prediction,
the detector data have some inherent limitations. First, the data cannot
capture individual vehicles’ movements and their interaction although
these factors are important for predicting risk of collision between two
vehicles. For instance, it is possible that the high crash risk events (e.g.,
very short spacing, very high relative speed) occurs at one time instant.
Although this event can lead to crash occurrence, the aggregated traffic
data from the detectors cannot capture such instantaneous events that
occur to individual vehicles. Second, the detectors cannot identify the

high crash risk events which occur at the location where the detectors
are not installed. Consequently, the past crash prediction models based
on detector data have the same limitations.

To estimate crash risk for individual vehicles, various surrogate
safety measures have been developed using vehicle trajectory data in
the past. For instance, Time-to-collision (TTC) has been used to estimate
the rear-end collision risk between two vehicles in the same lane
(Hayward, 1972; Hyden, 1987). Gettman and Head (2003) defined TTC
as the time it takes for the following vehicle to reach the position of the
lead vehicle if the lead vehicle stops and the following vehicle’s speed
remains the same.

Bachmann et al. (2012) revised this definition of TTC assuming that
the lead vehicle also continues moving at the present speed and on the
same trajectory. Some researchers defined TTC considering both gap
and speed difference between two vehicles (Minderhoud and Bovy,
2001; Vogel 2003; Astarita et al., 2012). In their definitions, TTC is
calculated using the distance between the rear end of the lead vehicle
and the front end of the following vehicle instead of the front-to-front
distance. Thus, this TTC considers actual spacing between two vehicles.
However, this TTC can be calculated only if the following vehicle’s
speed is higher than the lead vehicle’s speed. To overcome this lim-
itation of the conventional TTC, Ozbay et al. (2008) proposed the
modified TTC (MTTC) which estimates the collision risk even when the
following vehicle speed is lower than the following vehicle speed.
MTTC is determined based on both relative speed and relative accel-
eration of two successive vehicles.

Post-encroachment time (PET) has also been used to estimate the
rear-end collision risk. PET is defined as the difference between the
time when the lead vehicle last occupied a position and the time when
the following vehicle first reached the same position (Gettman and
Head, 2003). Unlike TTC, PET is an observed value which considers the
speed and acceleration variability of the two vehicles during the con-
flict. Most drivers of the following vehicles will decelerate to maintain
sufficient safety distance when the gap with the lead vehicle decreases.
Due to this driver’s speed adjustment, the value of PET is generally
longer than that of TTC.

Another surrogate safety measures called “the deceleration to avoid
crashes (DRAC)” is defined as the minimum deceleration rate of the
following vehicle to timely stop behind the lead vehicle as follows:
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where DRAC(t) is the DRAC at time t; XL(t) andXF (t) are the positions
of the lead and following vehicles at time t, respectively; VL(t) andVF (t)
are the velocities of the lead and following vehicle at time t, respec-
tively; and LL is the length of the lead vehicle. Lower TTC, lower PET
and higher DRAC represent the higher probability of rear-end collision
risk.

Cunto and Saccomanno (2008) developed the crash potential index
(CPI) using DRAC and maximum available deceleration rate (MADR) or
braking capacity of the following vehicle. The CPI is defined as the
probability that the following vehicle’s DRAC exceeds MADR. The CPI
for vehicle i is calculated using the following equation:
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where MADRi(t) are the MADR of the vehicle i at time t; N is the total
number of time intervals; Δt is the observation time interval and T is the
total observation time period (T=N× Δt). MADRi(t) varies in dif-
ferent surface conditions of the roadway (wet or dry) and vehicle me-
chanical characteristics (braking system). Due to these variations,
MADR was assumed to follow the truncated normal distribution
(American Association of State Highway and Transportation Officials
(AASHTO, 2004; Cunto and Saccomanno, 2008; Weng and Meng,
2011).
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