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A B S T R A C T

The repercussions from congestion and accidents on major highways can have significant negative impacts on
the economy and environment. It is a primary objective of transport authorities to minimize the likelihood of
these phenomena taking place, to improve safety and overall network performance. In this study, we use the
Hurst Exponent metric from Fractal Theory, as a congestion indicator for crash-rate modeling. We analyze one
month of traffic speed data at several monitor sites along the M4 motorway in Sydney, Australia and assess
congestion patterns with the Hurst Exponent of speed (Hspeed). Random Parameters and Latent Class Tobit
models were estimated, to examine the effect of congestion on historical crash rates, while accounting for un-
observed heterogeneity. Using a latent class modeling approach, the motorway sections were probabilistically
classified into two segments, based on the presence of entry and exit ramps. This will allow transportation
agencies to implement appropriate safety/traffic countermeasures when addressing accident hotspots or in-
adequately managed sections of motorway.

1. Introduction

Reducing congestion and accidents are the primary goals of any
transport agency. These two issues are interdependent on one another
as significant improvements to one could result in substantial impacts
on the other (Chang and Xiang, 2003). Furthermore, relieving conges-
tion could also reduce travel delays, such that air quality and economic
productivity can be improved. The connotation between congestion and
road safety is always a debated issue, by transport planners and safety
experts. Some studies argue that the increased level of traffic congestion
reduces traffic speeds and therefore leads to less severe crashes. While
that may be true, there will also be an increase in the likelihood of
exposure and the number of potential conflicts in the congested con-
ditions. This may lead to more crashes, although of a less severe nature
(Quddus et al., 2009).

Existing studies explore the applications of different statistical
models in estimating crash frequencies, crash rates, and injury seve-
rities at specific locations. For example, count data models such as
Poisson and Negative Binomial models were extensively used to esti-
mate crash frequencies (Shankar et al., 1995; Famoye et al., 2004; Bhat
et al., 2014); Tobit model was used to study the accident rates
(Anastasopoulos et al., 2008); the Mixed Logit (Moore et al., 2011), the

Ordered Logit and the Ordered Probit models (O’Donnell and Connor
(1996), Kockelman and Kweon (2002) were used to predict injury se-
verity. These studies considered road geometric variables (ramps,
shoulder width, and gradient), pavement characteristics (roughness,
rutting, and friction), environmental factors (rainfall, cross wind speed,
and snow) and traffic variables (AADT, posted speed limit and the
heavy vehicle proportionality). Traffic variables were considered a
proxy for traffic congestion in most of the earlier studies. However,
modeling the aggregated crashes at a road segment level with such
proxies for congestion may obscure the actual relationships (Quddus
et al., 2009). In this regard, some researchers have used disaggregated
crash records and a measure of traffic congestion during the accident
period (Zheng et al., 2010; Ahmed et al., 2012; Yeo et al., 2013).
Nevertheless, studies of this category require extensive traffic and crash
data, which can be computationally cumbersome.

Within this study, we apply the Hurst Exponent, a metric from
Fractal Theory, as a congestion indicator, as reported by Chand et al.
(2017) for crash-rate modeling. We analyze one month of traffic speed
data at several monitor sites along the M4 motorway in Sydney, Aus-
tralia and assess the congestion patterns in terms of the Hurst Exponent
of speed (Hspeed). Finally, we use Random Parameters and Latent Class
Tobit models to estimate the effect of congestion (in addition to other
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fundamental variables) on long-term crash rates. The detailed proce-
dure is discussed in the following sections.

2. Methodology

2.1. Fractal theory and the Hurst exponent

Fractal Theory, introduced by Benoit Mandelbrot (1967) is useful
for studying irregularities in a time series (Mandelbrot, 1967). Objects
that can be viewed with a similar appearance at different magnification
scales are called fractals. While classical geometry deals with objects of
integer dimensions (1-d lines and curves, 2-d squares and circles, etc.),
fractal theory deals with objects of non-integer dimension, called
Fractal Dimension. This dimension depends on the complexity of the
shape, i.e., a shape with a higher fractal dimension is more complicated
or rough, than one with a lower dimension and fills more space (Breslin
and Belward, 1999). There are various methods to estimate the fractal
dimension of a time series, such as the box-counting method, Hurst
exponent and Higuchi method. However, a widely used practice for
researchers is to calculate the Hurst Exponent using rescaled range (or
R/S) analysis (Hurst, 1951; Bo and Rashed, 2004; Chand et al., 2016).
Despite having several applications in many scientific fields, applica-
tions of fractal analysis of time series data is rarely explored in the
transportation domain. Presently, research is limited to observing the
fractal nature of traffic flow variables, rather than looking at potential
real-world applications (Chand et al., 2017).

The step-wise procedure of the standard R/S analysis is shown
below:
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(6) Calculate rescaled range series (R/S)
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(R/S)t is averaged over the regions [X1, Xt], [Xt+1, X2t] until [X(m-1)t+1,
Xmt] where m= floor (n/t). The value of t is normally chosen so that it
is divisible by n.

(7) Finally, Hurst exponent (H) is the slope of the regression line
that estimates the relationship between (R/S) versus t in log-log axes.

The following formula relates the Hurst exponent, H and fractal
dimension, D.

D=2-H (7)

For a time-series,

i A value of H in the range 0.5–1 is indicative of a time series having a
long-term positive autocorrelation. A high (or low) value will likely
be followed by another high (or low) value in the series, i.e., the
future trend is more likely to follow an established trend. For

example, a very high H value (say H=0.9) means a greater level of
determinism (as shown in Fig. 1a) and easily predictable. Large
Hspeed values can be seen after the occurrence of an incident or re-
moval of a bottleneck on a roadway. Incident does not necessarily
imply an accident; vehicle breakdown, fire hazard, police pull over,
sudden braking and lane changing in dense traffic can result in high
H values.

ii H values close to 0.5 (Fig. 1b) indicates a completely uncorrelated
series. The values in the time series are random and potentially in-
dicating Brownian motion. It becomes extremely challenging to
predict the future values for such time series.

iii H value of 0–0.5 suggests the long-term fluctuation between high
and low values in the time series. A low H value (say H=0.1) in-
dicates a strong determinism and good predictability despite being
volatile (Fig. 1c). A single high value will likely be succeeded by a
small value or vice-versa. For example, small H values can be ob-
served for traffic counts on downstream links at signalized inter-
sections, when the measurement interval is shorter than the cycle
time of the signal.

Fundamentally, large H values indicate weak dynamics, whereas
small H values indicate frequent changes, i.e. high dynamics. From
these phenomena, researchers have applied the Fractal Dimension and
the Hurst Exponent for incident detection, short-term predictions, and
accident warning models. In a recent study, researchers demonstrated
that high Hspeed could be used as a congestion indicator (Chand et al.,
2017). They observed high Hspeed values at several traffic monitor sites
during weekdays and evening peak hours. Furthermore, they also ob-
served a strong correlation between high Hspeed and historical incidents.
Reinforcing this premise, it was observed that strong dependence (high
Hspeed) would manifest after the occurrence of an incident. There can be
multiple instances in a time-window where a location has high Hspeed.
These occurrences may not be limited to police-reported incidents such
as; accidents, breakdowns and police stops, but also unreported in-
cidents such as; abrupt braking and lane changing in dense traffic
conditions, which were considered as surrogate safety measures in
earlier studies (Gettman and Head, 2003; Lee et al., 2006; Oh and Kim,
2010; Bagdadi, 2013). Therefore, the frequent occurrence of high Hspeed

at a location, can indicate a potentially higher number of crashes.

2.2. Tobit model

There has been an enormous emphasis in past research on factors
that determine the frequency of accidents (Anastasopoulos et al., 2008).
Using exposure-based accident rates (continuous variable) instead of
traditional accident frequencies (count variable) as the dependent
variable has significant appeal because accident rates are typically used

Fig. 1. Demonstration of the Hurst Exponent.
(Source: Cooperative Phenomena Group, n.d.).
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